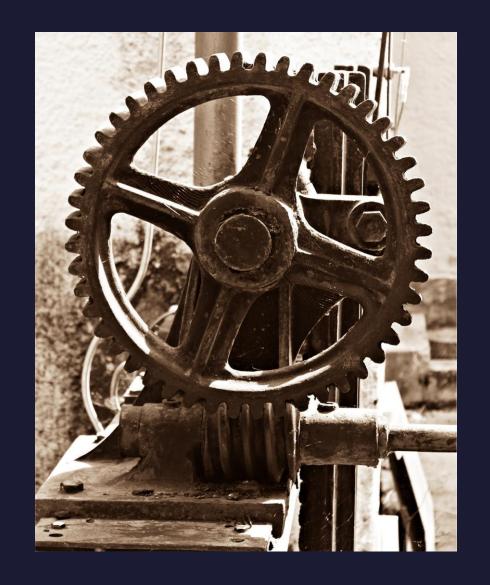
YOURCHARGE

Lademanagement in Großgaragen

Lastmanagement und Wallboxen


Unsere Antriebskraft

... überzeugt von der Notwendigkeit der Verkehrswende

... überzeugt von der Einfachheit der Elektromobilität

Die Mobilitätswende darf nicht an der Installation von Steckdosen scheitern!

Unser Lademanagement

- Privates Umfeld
- Großgaragen
- Außenstellplätze

- Roaming
- Contracting
- Stromverkauf

Wir bringen die Einfachheit der Nutzung von Wallboxen im EFH-Bau in den MFH-Bau.

Elektromobilität - #neuland

Agenda

- Wallboxen: Was versteht man darunter und warum braucht man sie?
- Der Aufbau eines Lademanagements am Beispiel einer Tiefgarage.

Elektromobilität - #neuland

Begrifflichkeiten

Begriff	Verbrenner	Elektroauto
Tankgröße	Tank in Liter	Akku in kWh
Verbrauch	Liter/ 100 km	kWh/ 100 km
Tankgeschwindigkeit	Liter/ min (irrelevant)	kW = kWh pro h

Beispiele/ Relationen/ Grundlagen

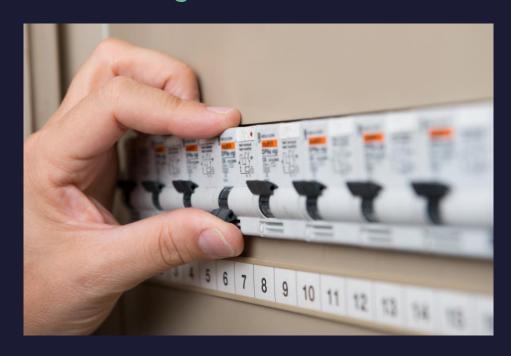
- Verbrauch eines Elektroautos: ca. 12 kWh/100 km bis 25 kWh/100 km; im Mittel: 20 kWh/100 km
- übliche Akkugrößen: 10 kWh (Plugin-Hybrid), 30 kWh (Stadtauto), 60 kWh (Mittelklasse), 100 kWh (Oberklasse)
- Durchschnittliche Fahrleistung: $15.000 \text{ km/a} \rightarrow \text{grob ca. } 3.000 \text{ kWh/a Stromverbrauch (Vergleich: 2-Personen-Haushalt)}$

Wallboxen

Warum eine Wallbox?

- hohe Ladeleistungen bis 22 kW
 (Ladezeit für 80 kWh; an Steckdose: 35 h; an Wallbox: 4 h)
- Komfort, insbesondere bei angeschlagenem Kabel
- Sicherheit: Kein Strom ohne interne Checks!
- Schutz vor Stromklau
- Intelligent vernetzbar

 Lastmanagement (MFH) oder auch optimierte PV-Nutzung (EFH)



Herausforderung im Mehrfamilienhausbau: Überlast

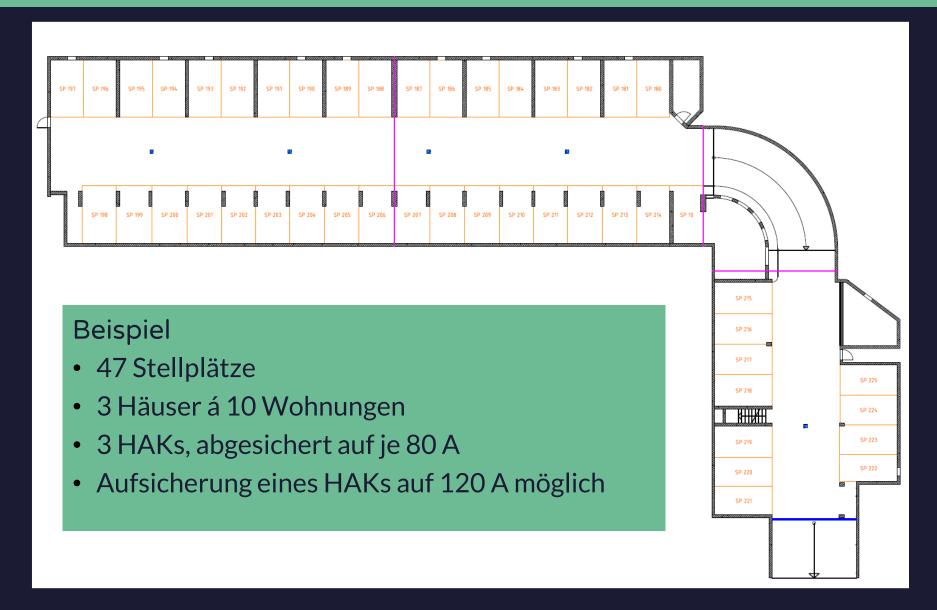
Überlastung des Stromnetzes, sowohl im Haus als auch auf Netzebene

Überlastung des Hausnetzes

Überlastung des Stromnetzes, Blackout

Wie viel Anschlussleistung wird überhaupt benötigt?

- Ohne Intelligenz: n x Leistung (meist 11/22 kW; g = 1)
- In der Praxis (EnBW-Projekt): g = 0,2
- Mit Intelligenz: sinnvoll nutzbar ab 1 kW je Auto.
- → Lastmanagement reduziert deutlich die notwendige Leistung am HAK.


Vorgehen bei der Dimensionierung

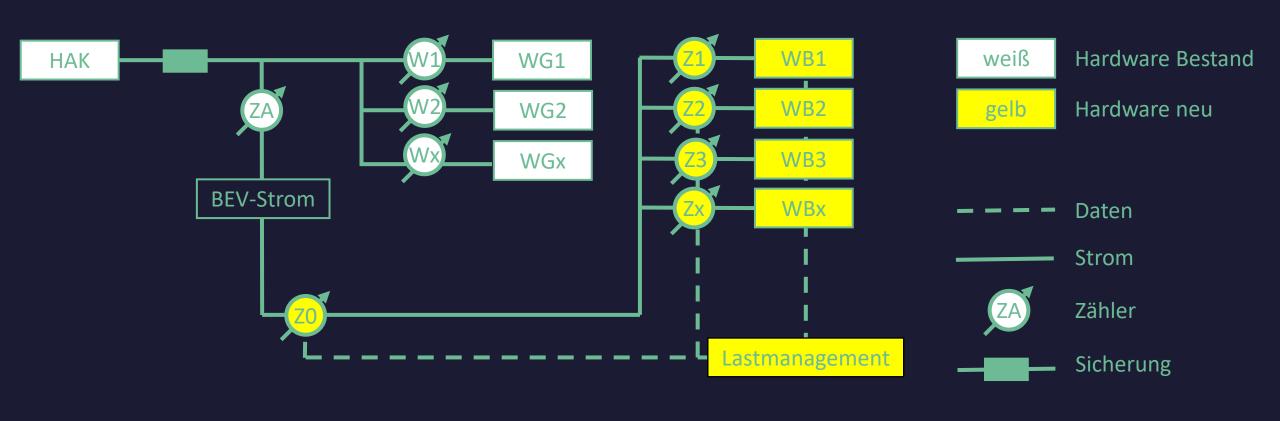
- Betrachtung vom Ende her: Wie sieht das System bei 100 % Elektroautos aus?
- Erst danach: Welche Stufe ist heute notwendig (üblich: 5 bis 10 % Elektroautoquote)?

Vorteile

- Keine ggfls. nicht notwendigen Investitionen, z.B., wenn sich doch H₂-Autos durchsetzen.
- Investitionen werden auf spätere Zeitpunkte verschoben, Kosten teilen sich dann auf mehr Nutzer auf → Erhöhung der Akzeptanz

Wichtig: Alle Einbauten, z.B. die Leitung vom Zähler in die TG, sollte für den Endausbau dimensioniert sein.

Dimensionierung, Ausbaustufe 1, Anlagenleistung


• 40 A feste Zuweisung für die Elektromobilität

- → 27 kW
- → Mögliche elektrische Kilometer, geladen von 20 Uhr bis 06 Uhr: 500 Tkm
- Ausreichend für bis zu rund 20 Autos á 25 Tkm, zzgl. Tagladungen, zzgl.
 Fremdladungen oder 32 Autos á 15 Tkm

→ Lastmanagement

Schema festes Lastmanagement (lokal)

Dimensionierung, Ausbaustufe 1, Verkabelung TG



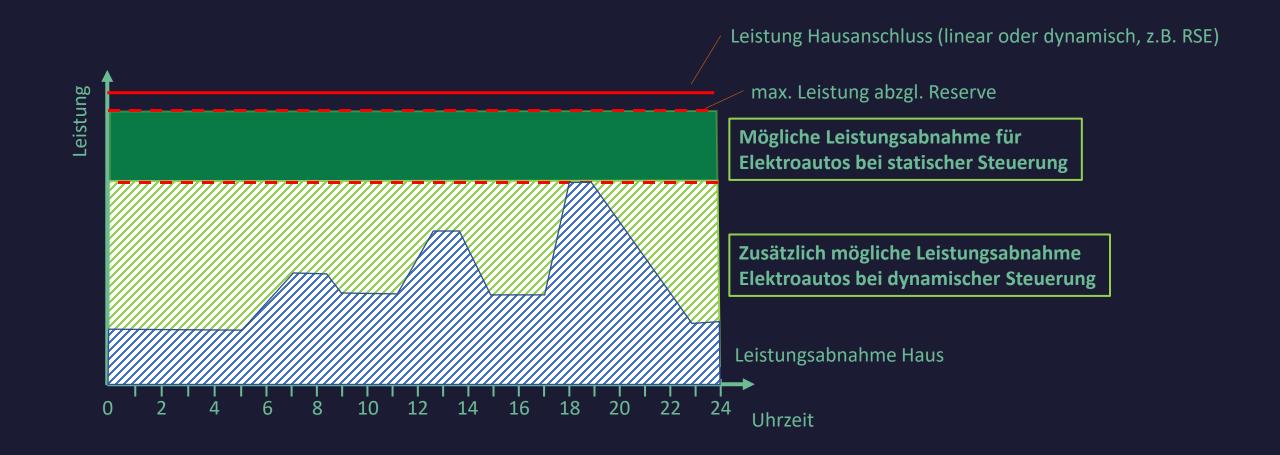
Begrenzung der Stromverteilung: 40 A

Anwendungsgrenze: ca. 20 bis 25 vollelektrische Autos → Ausbaustufe 2

Stromaufteilung, Erhöhung der Anlagenleistung

Möglichkeit: Nutzung des Hausüberschusses

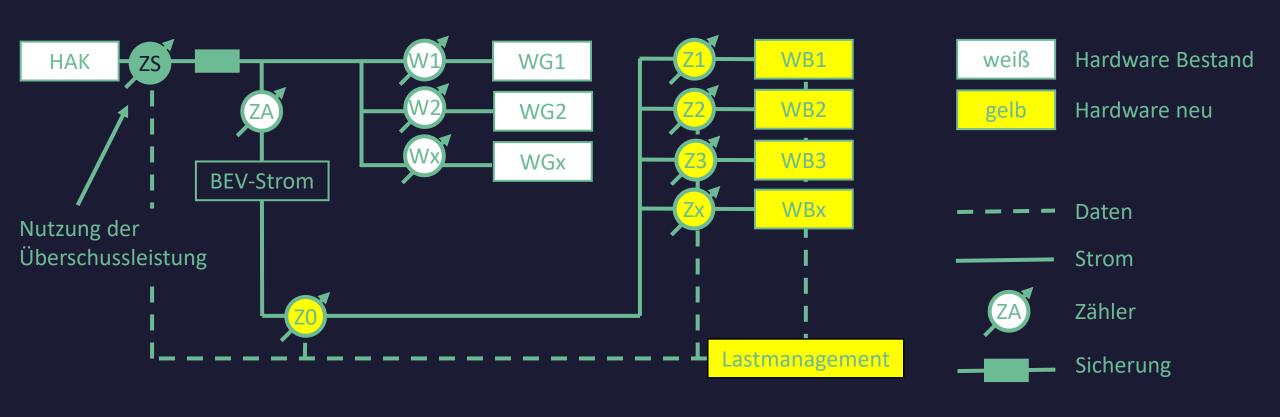
→ Dynamisches Lastmanagement



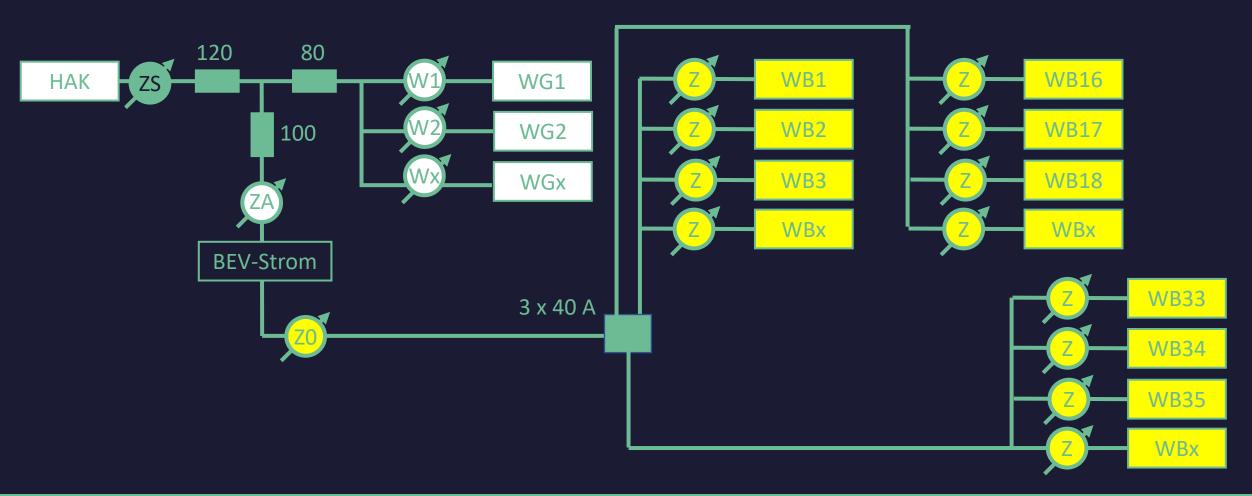
Wie ausgelastet ist ein Hausanschluss?

- Dimensionierung auf Peak, bei Haus zumeist auf Abend
- Nach DIN 18015-1 folgt für das Beispiel von 10 Wohnungen: 80 A = 55 kW
- Grundlast Wohnung (nachts): ca. 500 W; → 5 kW bei 10 Wohnungen
- → Bis zu 90 % der Wohnungsleistung liegen nachts brach.
- → Nutzung für die Elektromobilität

Arten des Lastmanagements.


Dimensionierung, Ausbaustufe 2

- 40 A feste Zuweisung für die Elektromobilität
- Bis zu weitere 60 A aus dynamischer Nutzung



- \rightarrow 27 kW + max. 40 kW = 67 kW (Kleinwandler)
- → Mögliche elektrische Kilometer, geladen von 20 Uhr bis 06 Uhr: 1,2 Mio km
- → Ausreichend für alle 47 Autos (á 25 Tkm), zzgl. Tagladungen
- → Ein HAK (von 3) reicht in diesem Beispiel aus, um alle Stellplätze zu elektrifizieren.
- → Keine Erdarbeiten/ Aufrüstung des HAK notwendig

Schema Dynamisches Lastmanagement, Regelung Hausanschluss

Schema Dynamisches Lastmanagement, Aufteilung der Stränge

Referenz

Grundlagen

- WEG mit 2 TGs (je ca. 40 Stellplätze), ca. 40 Jahre alt
- Anschluss derzeit: je 40 A Dauerstrom
- TG1 mit RSE, TG2 ohne RSE (RSE derzeit nicht begrenzend)
- Kosten Grundinstallation, ca. 400 EUR/ Stellplatz
 - Zählerkastenumbau
 - Lastmanagement
 - Verlegung Strom- und Datenkabel bis zu UVs
- Kosten Wallbox, Anschluss an Zentralverkabelung, Integration ins Lastmanagement: 1.700 EUR
- Mehr Informationen: https://yourcharge.eu/2020/12/12/yourcharge-in-der-praxis/

Fazit

Lastmanagement ist immer eine Beschränkung!

Aber: Es ist meist der beste Weg, ressourcenschonend eine gut nutzbare Ladeerfahrung zu bieten.

Die Elektromobilität wird nicht an der Installation von Wallboxen scheitern.

Elektromobilität ist auch im WEG-Umfeld möglich. Packen wir es an und bringen die Energiewende voran.

Bahnhofstraße 63e

85617 Aßling

www.yourcharge.eu

Tel: 08092 25044-0