

Gebäudeintegrierte Solartechnik

Beispiele – Richtwerte – Rahmenbedingungen

(illustriert durch Einreichungen aus dem "Architekturpreis Gebäudeintegrierte Solartechnik")

Fabian Flade

1 MW PV-Anlage Solardach Messe München Weltgrößte Aufdachanlage bei Errichtung (1997)

Schwerpunktthema

Architekturpreis Gebäudeintegrierte Solartechnik

1. Preis (2000): Universitätsbauamt Erlangen

1. Preis (2014): René Schmid Architekten

1. Preis (2011): Deppisch Architekten

1. Preis (2008): Beat Kämpfen

1. Preis (2005): Rolf + Hotz Architekten

1. Preis (2020): Fabeck Architectes

1. Preis (2017): Architekturbüro Klärle

1. Preis (2022): Megasol Energie

1. Preis (2001): PMP Architekten

Schnittstelle Solartechnik/Architektur International ausgeschriebener Wettbewerb

Photovoltaik

VS.

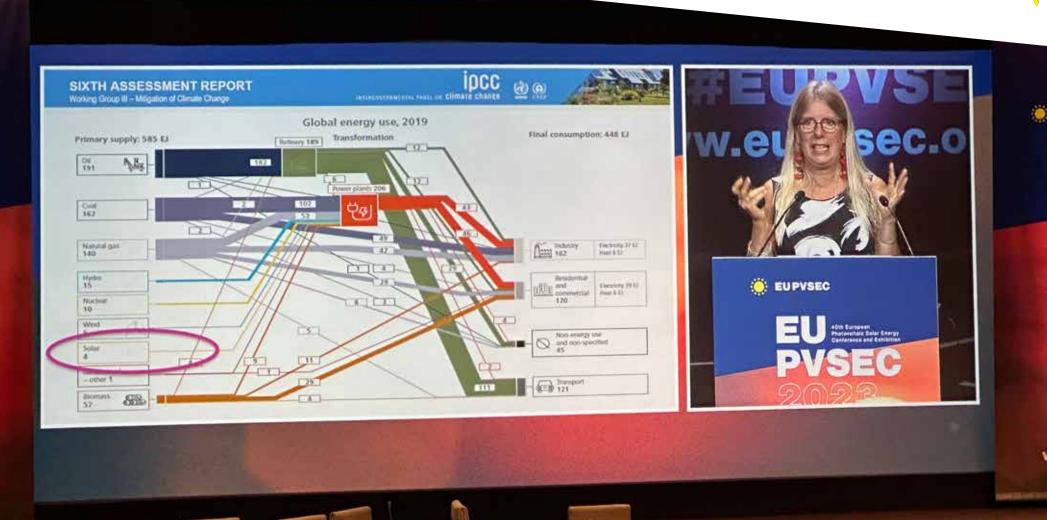
Solarthermie

Altbau mit Aufstockung + Neubau Büro 72 m² PV (8,64 kW), 24 m² Solarthermie (O/W-Ausrichtung)

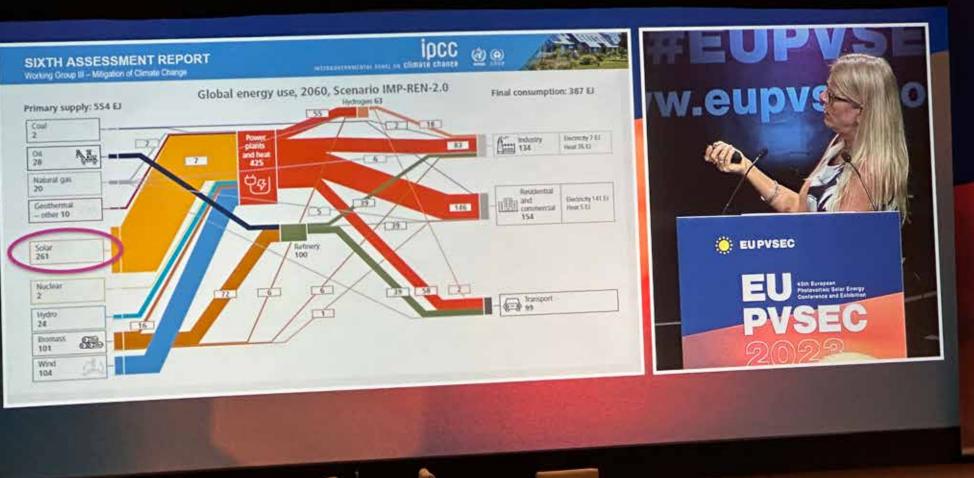
technische Integration

VS.

optische Integration


Gesamtsanierung einer landwirtschaftlichen Hofanlage 80 kW Aufdach-PV-Anlage mit Standard-PV-Modulen

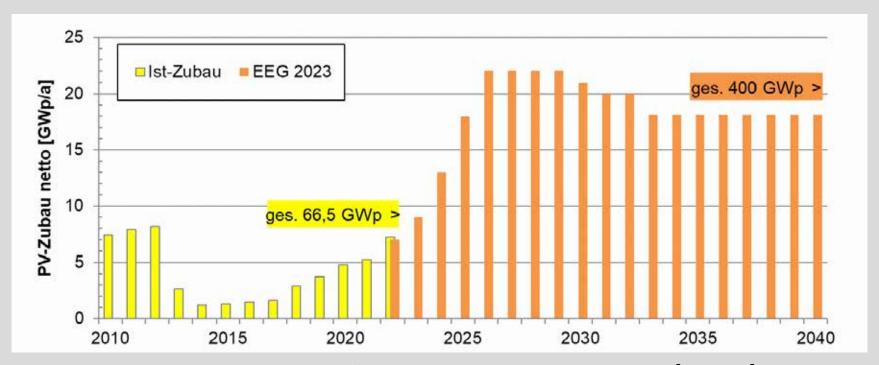
Hof 8, Schäftersheim (2014) Architekturbüro Klärle



Quelle: Prof. Dr. Diana Ürge-Vorsatz, Vice-Chair IPCC "Photovoltaics in the Context of the Climate Crisis", Key Note Speech,

EU PVSEC 2023

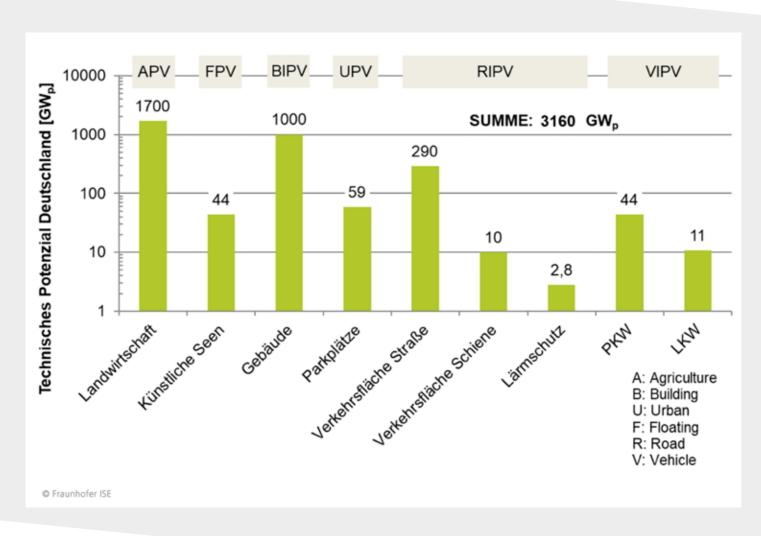
#EUPVS



Quelle: Prof. Dr. Diana Ürge-Vorsatz, Vice-Chair IPCC

"Photovoltaics in the Context of the Climate Crisis", Key Note Speech,

EU PVSEC 2023



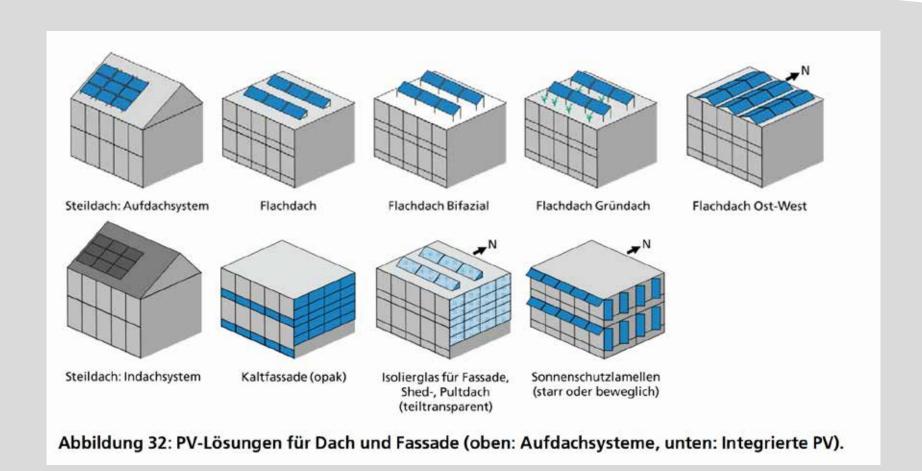
Netto-PV-Zubau: Ist-Werte bis 2022, Ausbaupfad zur Erreichung der gesetzlichen Ziele [EEG 2023]

Quelle: Aktuelle Fakten zur Photovoltaik in Deutschland, Harry Wirth, Fraunhofer ISE, Download von www.pv-fakten.de, Fassung vom 17.05.2023

Akzeptanz Gebäude nur als Unterkonstruktion für Solaranlagen

© Bildarchiv Bayerisches Landesamt für Denkmalpflege, München; Fotograf: Joachim Gattenlöhner, Kitzingen

Web-Forum Bauzentrum, Landeshauptstadt München Bauwerkintegrierte Photovoltaik – BIPV (26.09.2023)


Das Bauen gehört zu den größten Klimasünden

Null- bzw. Plusenergiegebäude als Treiber,
 Gebäude werden vom Energieverbraucher zum Energieerzeuger

Solarenergie wird eine weitaus stärkere Rolle spielen: REPowerEU (320 GW bis 2025; 600 GW bis 2030) D: 54 GW (2020) EU: 136 GW (2020)

- benötigt Flächen
- Technologie wird sichtbarer: Akzeptanzproblematik

Quelle: Aktuelle Fakten zur Photovoltaik in Deutschland, Harry Wirth, Fraunhofer ISE, Download von www.pv-fakten.de, Fassung vom 17.05.2023

Orientierung:		Ost	Südost			Süd			Südwest				West	
		-90°	-75°	-60°	-45°	-30°	-15°	0°	15°	30°	45°	60°	75°	90°
Horiz.	0°	84%	84%	84%	84%	84%	84%	84%	84%	84%	84%	84%	84%	84%
Neigung	10°	83%	85%	87%	89%	90%	91%	91%	91%	90%	88%	87%	85%	83%
	20°	82%	86%	90%	92%	95%	96%	96%	96%	94%	92%	89%	85%	81%
	30°	81%	86%	90%	94%	97%	99%	99%	98%	96%	93%	89%	84%	79%
	40°	78%	84%	90%	94%	98%	100%	100%	99%	97%	93%	88%	82%	76%
	50°	74%	81%	87%	92%	96%	98%	99%	97%	95%	91%	85%	79%	72%
	60°	70%	77%	83%	88%	92%	94%	95%	94%	91%	86%	81%	75%	67%
	70°	64%	71%	78%	83%	86%	88%	89%	88%	85%	81%	75%	69%	62%
	80°	57%	64%	70%	75%	79%	81%	81%	80%	77%	73%	68%	62%	55%
Vertikal	90°	50%	56%	62%	66%	69%	70%	71%	70%	68%	64%	60%	54%	48%

Abbildung 37: Relatives Ertragspotenzial, unverschattet, Standort Freiburg, berechnet online mit https://re.jrc.ec.europa.eu/pvg_tools/en/.

Quelle: Aktuelle Fakten zur Photovoltaik in Deutschland, Harry Wirth, Fraunhofer ISE, Download von www.pv-fakten.de, Fassung vom 17.05.2023

Standardmodul vs. Sondermodul

Technologien

monokristallin (22 % Wirkungsgrad) – polykristallin (18 % Wirkungsgrad)

Dünnschicht (amorphes Silizium, CIGS, CdTe, Polymer)
Wirkungsgrad 5 - 10 %

Kenndaten

1 kW installierter Leistung ≈ 1.000 kWh/a

1 kW monokristallin ≈ 7 m² Modulfläche

1 kW polykristallin ≈ 8 m² Modulfläche

1 kW Dünnschicht ≈ 11 m² Modulfläche

Abmessungen und Geometrien

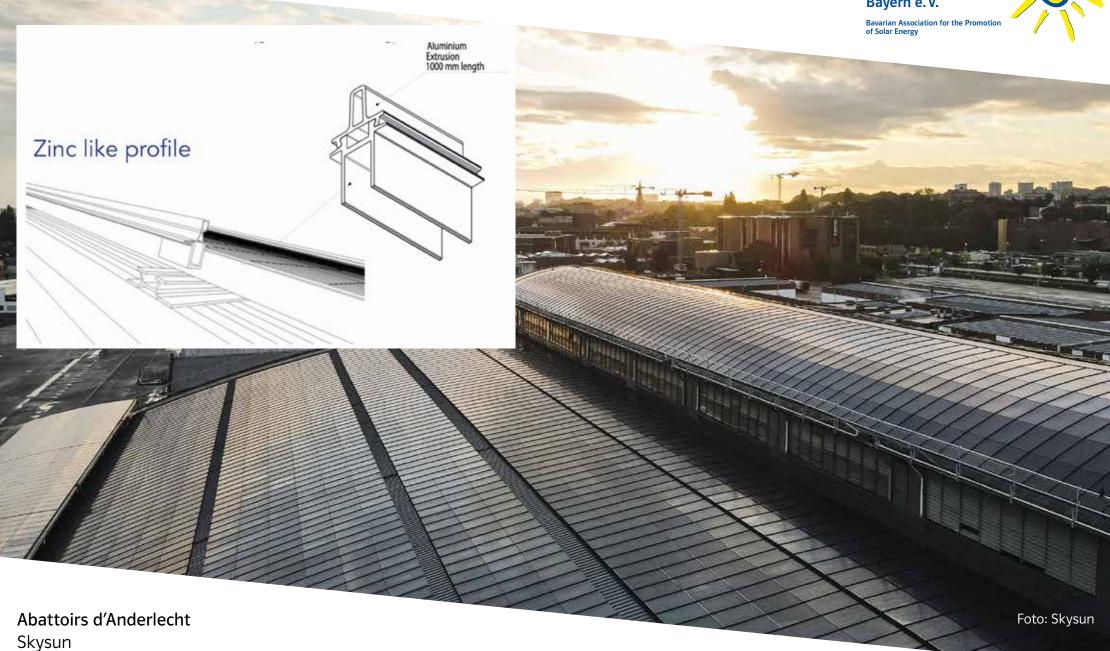
Abhängig von der Anzahl der Zellen
 Standard kristallines Modul: 60 Zellen á 156 x 156 mm = 1700 x 1000 mm
 Trend: Halbzellenmodule mit 120 Zellen, verschaltet in zwei Hälften

Sondermodule von 40 x 40 mm - 2000 x 5000 mm

Aufbau

• Glas/Folien-Module - Glas/Glas-Module

1.945 kW PV-Anlage (Aufdach) Sanierung einer denkmalgeschützten Markthalle von 1890



PV-Anlage mit der Ästhetik eines Zink-Stehfalzdaches Low tech-Lösung mit Alu-Profilen im Montagesystem Solarenergieförderverein Bayern e. V. Bavarian Association for the Promotion of Solar Energy Foto: Skysun Abattoirs d'Anderlecht

Skysun

PV-Anlage mit der Ästhetik eines Zink-Stehfalzdaches Low tech-Lösung mit Alu-Profilen im Montagesystem

370 W Glas/Folie-PV-Module mit schwarzem Rahmen und schwarzer Folie

Zielmarkt: Zink-Dächer in Paris (Baron Haussmann)

Nextensa

Abstimmung mit Denkmalschutzbehörden leicht mattierte Oberfläche der PV-Module

Nextensa

38,8 kW PV-Fassade mit großzügigem Zellabstand Mehrfachnutzen: Energie, Sonnenschutz, Tageslicht, Innen-Außen-Be-Solarenergieförderverein Bayern e. V. Bavarian Association for the Promotion of Solar Energy Gare Maritime, Brüssel Foto: Sarah Blee Nextensa

Energetische Ertüchtigungen im Gebäudebestand 158 kW PV-Fassade in den Brüstungsbändern

Burckhardt-Partner

158 kW PV-Fassade in den Brüstungsbändern leicht schwarz mattierte PV-Module

Sanierung Coop-Hauptsitz, Basel Burckhardt-Partner Foto: Mark Niedermann

Bavarian Association for the Promotion of Solar Energy

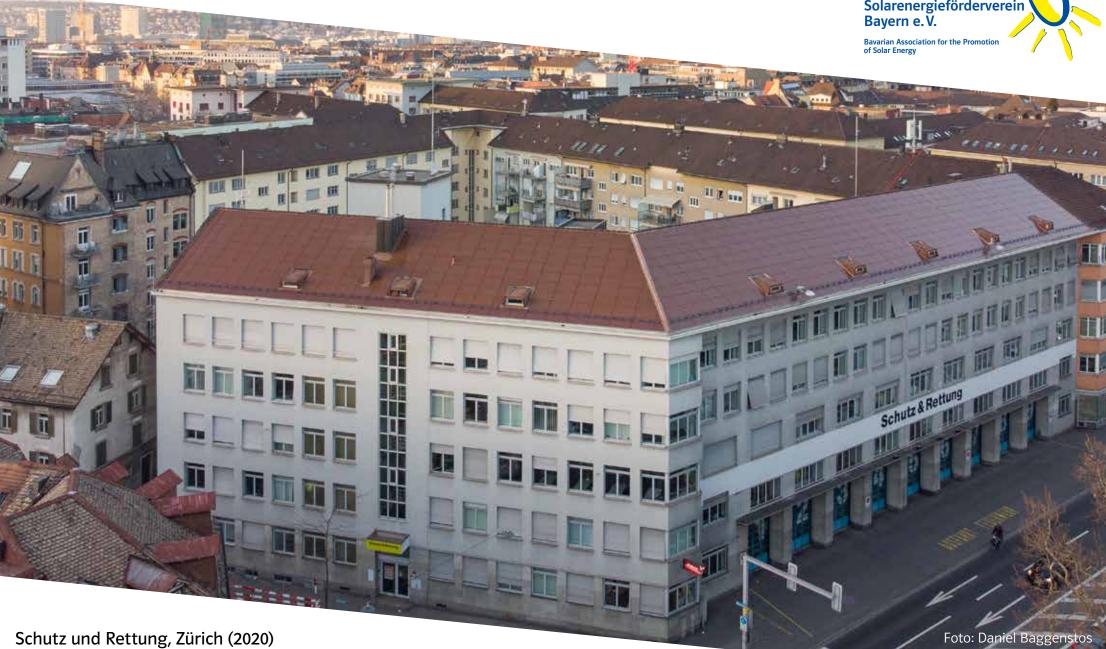
Solarradiologie, Marburg Hagen Plaehn, Architekt 55 kW Fassaden-PV-Anlage Sanierung, 28 verschiedene Geometrien der Sondermodule

Solarradiologie, Marburg Hagen Plaehn, Architekt 55 kW PV-Anlage (gewölbte PV-Fassade) (Radien ab 450 mm möglich, hier 2500 mm)

Foto: APL

Solarradiologie, Marburg Hagen Plaehn, Architekt Sanierung zweier MFH aus den 1980er Jahren zu Plusenergiegebäuden

SKS Architekten/Pensionskasse Bernische Kraftwerke



Farbe

sichtbar vs. unsichtbar Druck vs. Folie 76 kW PV-Anlage (Indach) (799 m²) Dach-Sanierung

3S Swiss Solar Solutions

Gebäude steht unter Bestandschutz als Randbebauung in einem dichtbesiedelten Bereich Zürichs.

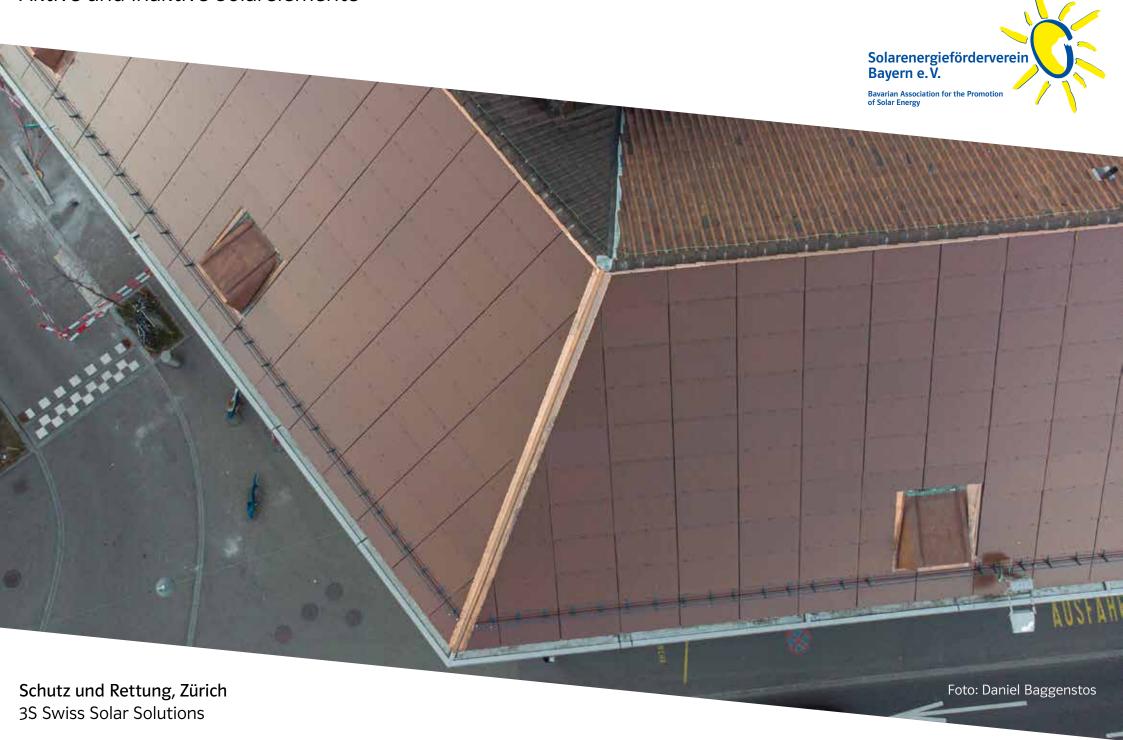
Solares Bauprodukt 590 Module MegaSlate II Flair á 145 W (1.300 x 875 mm)

Foto: Daniel Baggenstos

Schutz und Rettung, Zürich 3S Swiss Solar Solutions Nanofolie (Solaxess), dadurch satiniertes Solarglas (5 mm ESG) möglich Minderleistung: - 18 % (Herstellerberechnung)

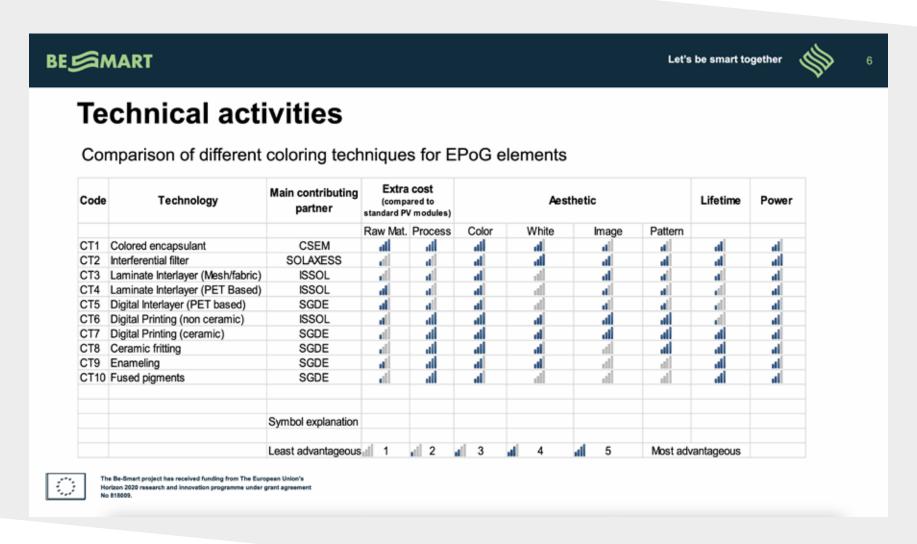
Foto: Daniel Baggenstos

Schutz und Rettung, Zürich 3S Swiss Solar Solutions


Transformation der Dachlandschaft

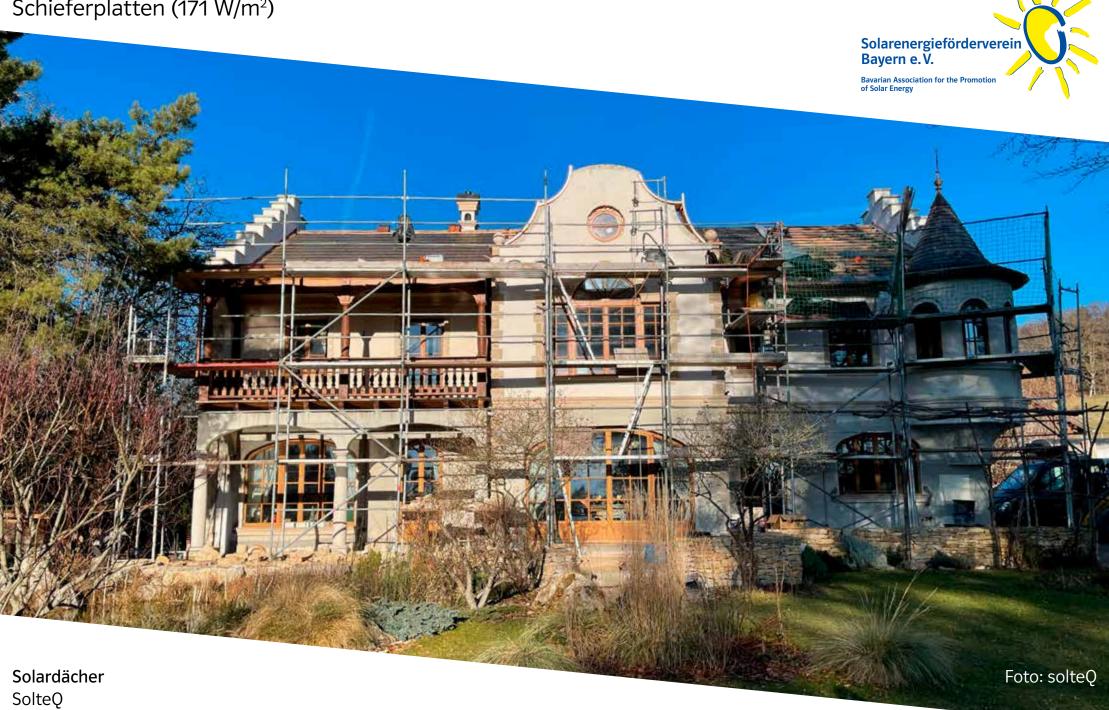
3S Swiss Solar Solutions

Aktive und inaktive Solarelemente



Vielzahl von Schichten, um sichtbares Licht zu reflektieren, während die Infrarot-Strahlung zu den Solarzellen geleitet wird. Die Reflektion des weißen Lichtanteils wird durch eine zusätzliche Mikrostruktur auf der Rückseite der Folie erreicht. Dies führt zu einer weißen, homogenen Oberfläche. Andere Farben werden durch eine Anpassung der Kombination der Filter oder durch Zugabe von Farbpigmenten erreicht.

SOLAXESS WHITE & COLOR SOLAR TECHNOLOGY		STANDARD COLORS (05.2022)			
Name	Color	Approximative color codes (satin glass)			Performance Retained
Hamo	55151	RAL Classic	RAL Design	NCS 1950	(%)
White				1005-R80B	55%
Light Grey			260 80 05		75%
Dark Grey				6005-R80B	90%
Terracotta		8002		6020-Y50R	82%
Dark Brown			040 30 10		88%
Grey-Beige				4005-G80Y	80%
Barbados Beige			090 70 10	3005-Y20R	70%
Light Terracotta				4010 Y50R	71%
Pine Green		6028	160 40 20		80%
Verdigris			160 70 10		61%
Ocean Blue			220 50 15		72%
Falu Red		3009		5040-Y80R	64%
Terra Orange			040 60 40	3040 Y80R	53%
Gold					72%


- Bedrucken der Gläser (Vorder- oder Rückseite); keramische Tinte (ColorQuant)
- Farbige Folien, farbige Solarzellen
- Bragg-Spiegel (Morphocolor, spektralfarben möglich)

Solarschindeln, kombinierbar mit marktüblichen Kunststein- oder Echt-Schieferplatten (171 W/m²)

8,32 kW, Belegung mit Solarziegeln kupferrot engobiert mit rotem Modul (passend zu "Creaton Domino") Solarenergieförderverein Bayern e. V. Sanierung, Tübingen Foto: Susanne Buchholz GWG Tübingen/Stadtwerke Tübingen/Orth Architekten

82,42 kW PV-Fassadenanlage PV wird unsichtbar (keine Solarzellen, keine Befestigung)

82,42 kW PV-Fassadenanlage PV wird unsichtbar (keine Solarzellen, keine Befestigung)

a+r Architekten

Material

Glas vs. Folie

56 kW Indach-PV-Anlage Akzentuierung und stimmige Ergänzung des Mauerwerks

Foto: Frank Hanswijk

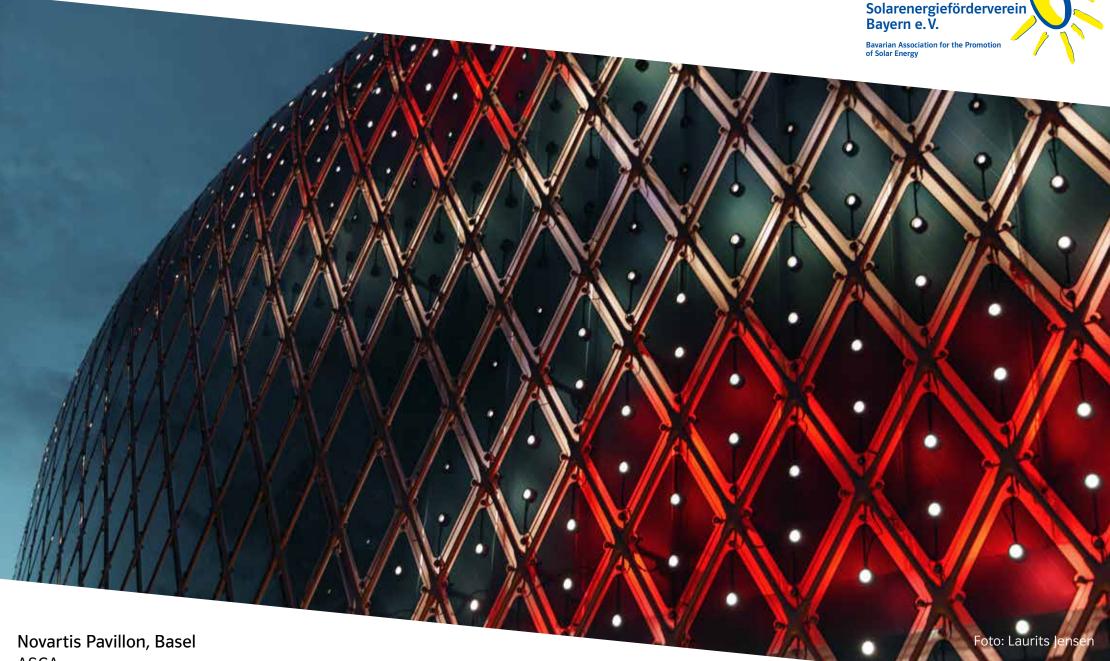
PTT Binnenrotte, Rotterdam Orange Architects 10 kW PV-Anlage, glasfaserverstärkter Kunststoff, in dessen Schichten monokristalline Zellen laminiert sind; sehr leicht (3,3 kg/m²)

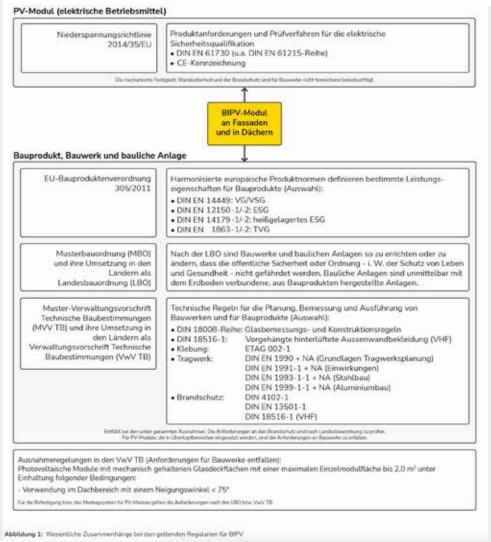
21,6 kW PV-Anlage, Stehfalzeindeckung mit PV werkseitig vorgefertigt Verschaltung der Module auf der Rückseite

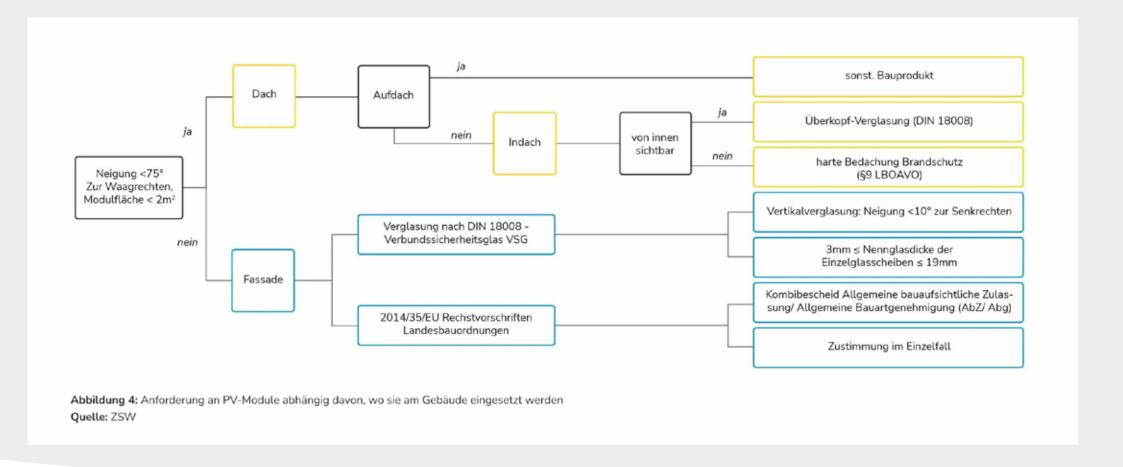
DAS Energy/Kalzip

Die rautenförmigen **OPV**-Zellen bestehen aus einem organischen Halbleiter auf Polymerbasis und werden in feinen Schichten auf eine dünne Folie "gedruckt". Diese zum Witterungsschutz zwischen zwei transparenete, 3 mm starke Polycarbonatplatten einlamiert – es entsteht ein sogenanntes OPV-Modul mit einer transluzenten Zellenstruktur.

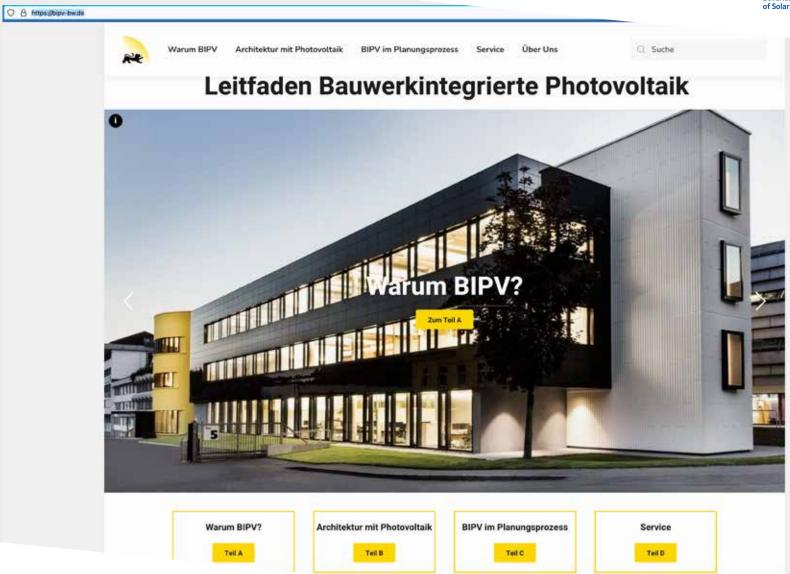
Hochschule für Technik Stuttgart/Baufritz







ASCA



www.helmholtz-berlin.de

Web-Forum Bauzentrum, Landeshauptstadt München Bauwerkintegrierte Photovoltaik – BIPV (26.09.2023)

www.allianz-bipv.org

Newsletter abonnieren Webinare wahrnehmen Materialien nutzen

Web-Forum Bauzentrum, Landeshauptstadt München Bauwerkintegrierte Photovoltaik – BIPV (26.09.2023)

Kostenlose Materialien

Gebäudeintegrierte
Solartechnik

Authene gesteher unt
Phetovotes und Goldriname

Gebäudeintegrierte Solartechnik

Wanderausstellung

Bildkalender

Web-Forum Bauzentrum, Landeshauptstadt München Bauwerkintegrierte Photovoltaik – BIPV (26.09.2023)

Solarenergieförderverein Bayern e. V.

Friedrich-List-Str. 88 81377 München Tel.: 0 89 / 27 81 34 - 28 fabian.flade@sev-bayern.de info@sev-bayern.de

www.sev-bayern.de

