Bauliche Maßnahmen gegen Starkregen und Überflutungen

 Empfehlungen für Hausbesitzer und Hausbesitzerinnen -

Starkregen

Mit **Starkregen** werden in der Meteorologie große Mengen Regens bezeichnet, die in kurzer Zeit fallen. Diese Art des Regens ist somit nach seiner **Intensität** und **Dauer** definiert.

Starkregen kommt in den Tropen, Subtropen und gemäßigten Breiten vor und kann von wenigen Minuten bis zu einigen Stunden dauern.

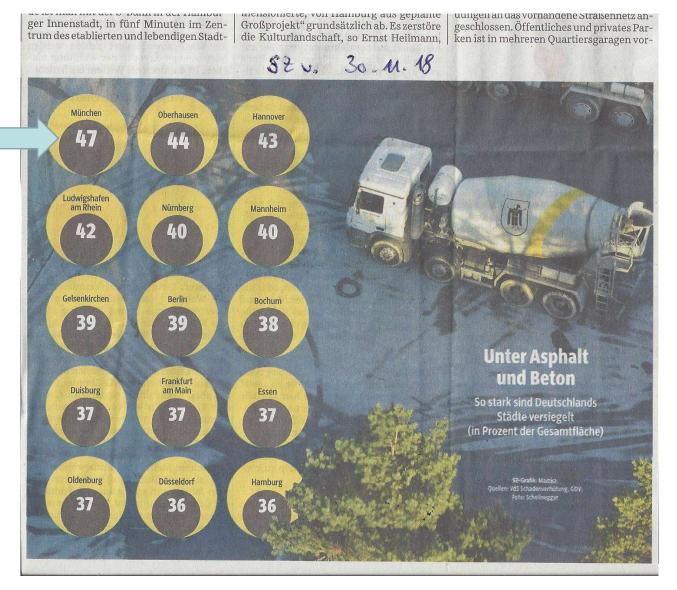
Definition:

Regen, der im Verhältnis zu seiner Dauer eine hohe Niederschlagintensität hat und daher selten auftritt; z. B. im Mittel höchstens zweimal jährlich

Beispiel: starker Regen > 10 l/m² sehr starker Regen > 50 l/m² in 1 Stunde

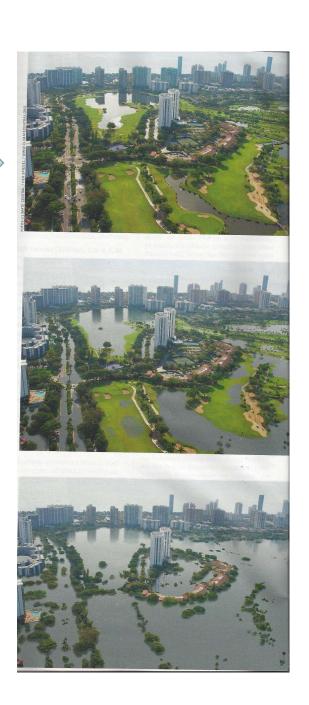
Quelle: Wickipedia, Starkregen

Deutscher Wetterdienst; Niederschlagsverteilung

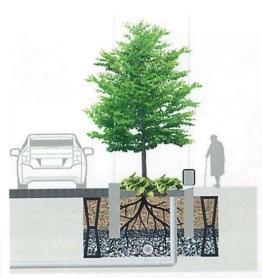

- Niederschlagsverteilung, –intensität und –dauer durch DWD,
- Veröffentlichung in KOSTRA-Atlas (derzeit: 2010) Koordinierte Starkniederschlags
 Regionalisierungs Auswertung
- KOSTRA-DWD-2010R (Jahre von 1951 bis 2010):
 - Zunahme der Winterniederschläge in den Dauerstufen > 12 h; nicht maßgebend für Kanaldimensionierung,
 - 2. Starkregenhöhen der Dauerstufen 15 bis 30 Min. mit Wiederkehrzeiten von 1 bis 100 Jahre keine Erhöhungen,
 - 3. Starkregen im Kurzzeitbereich von 5 und 10 Minuten haben sich erhöht.

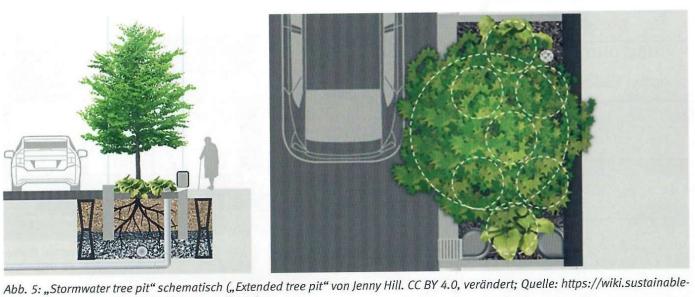
Vergleich abgeflossene Niederschlagswassermengen im Kanalnetz mit DWD-Jahresniederschlägen:

Kein einheitlicher Trend, d. h. im Kanalnetz leichter Anstieg – fallender Trend der Jahresniederschläge


Veröffentlichungen, Presse

Stadt München mit höchstem Versiegelungsgrad von 47 %


Veröffentlichungen. Presse


Schwamm stadt Sponsh city

Fachwelt/Industrie

Stormwater tree pit, Korrespondenz Abwasser der DWA, Mai 2022

technologies.ca/wiki/File:Extended_tree_pit.png)

Abb. 4: Regenwasserbewirtschaftungskonzept für Straßenbäume in San Francisco aus dem Jahr 1986 (aus [18])

Anlagencharakteristik Ausführungsvarianten Angeschlossene Flächen Gehweg / Dach / Straße Hauptfließweg Versickerung / Zisterne / Kanal Notüberlauf Zisterne / Kanal / Straße Speicherraum Füllkörper / Bodenauffüllung Beschickung oberirdisch / unterirdisch Systemtyp offene Baumscheibe / überbaut Einstau oberirdisch / unterirdisch / keiner Wasserrückführung Pumpe / Kapillarsäule / keine

Tabelle 1: Anlagencharakteristika von Baumrigolen und ihre Ausführungsvarianten

Konkrete Auswirkungen auf Bauherren und Planer

- Technische, fachgerechte Untersuchung zu Bodenverhältnissen in Hinblick auf Regenwasserbewirtschaftung / Regenwasserversickerung (MHGW, K_f-Wert, Altlasten, GW-Strömung, Nachbarbebauung),
- Überlegungen zu wirtschaftlichen Lösungen, die Regenwasser auf dem Grundstück halten, z. B. Retentionsräume schaffen (Zisternen, Drosseln, "Stauraumkanal", Art der Dachdeckung und Regenwasserableitung und Befestigung der Verkehrsflächen),
- 3. Wirtschaftlichkeitsberechnung zur Nutzung von Regenwasser im Gebäude zur Bewässerung des Gartens, Nutzung im WC oder Waschmaschine,
- 4. Detaillierte Überlegungen zu Höhenverhältnissen, Gefällesituation des Grundstückes und Umgriff des Geländes,
- 5. Bei Mischkanalisation: Rückstausicherheit des Kellers beachten!

Regenwasserversickerung

- RW von Dach- und Verkehrsflächen auf eigenem Grundstück versickern:
 - sickerfähigen Boden = Kf-Wert größer als 1 x 10⁻⁶ m/s, d.h. keinen lehmigen Boden; z. B. sandig-kiesigen Boden
 - die Sickerfähigkeit kann an Ort und Stelle mit Sickertest bestimmt werden:

http://www.wwa-m.bayern.de/service/antraege/pdf/sickertest.pdf

Sickertest

Mit Wasser befüllen, Wassersättigung abwarten, dann ca. 1 h die Absenkung [cm] messen ⇒ **Kf-Wert** Grube ausheben an der Stelle, die für die Versickerung vorgesehen ist.

Regenwasserversickerung

- Bau von Versickerungsanlagen wie
 - Rohrrigole,
 - Kasten-/Füllkörperrigole,
 - Sickermulde,
 - (Sickerschacht) (nicht mehr a.R.d.T.)

wenn Sickerfähigkeit des Bodens gegeben.

Rigolenversickerung

Rohrrigole: größerer Platzbedarf, geringere Herstellungskosten, Aushubvolumen wird zu ca. 25% für Rückhalt genutzt.

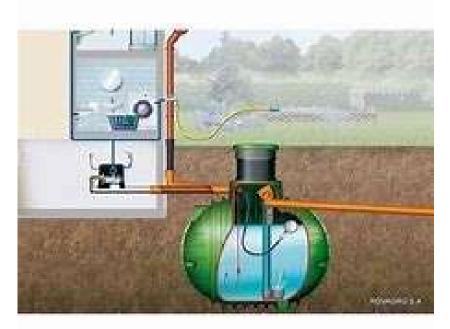
Kastenrigole:

Aushubvolumen wird zu ca. 90% für Rückhalt und Versickerung genutzt

Muldenversickerung

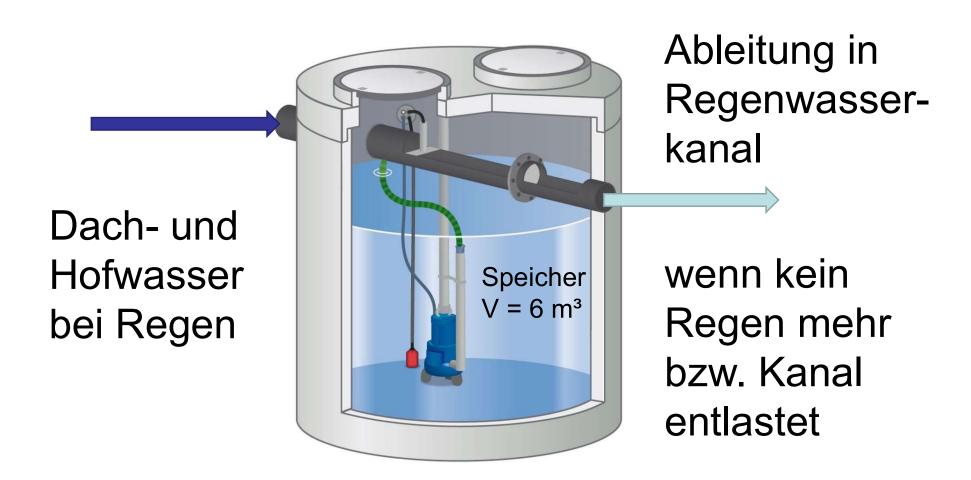
Größere Rückhalteräume (Siedlungen): Sickerbecken

Regenwasserbewirtschaftung


Größter Schutz vor GW-Verschmutzung Wasserwirtschaftlich beste
Versickerungs- und
Rückhalteanlage,
günstigste und anpassungsfähige,
gestalterische Anlage, höherer
Unterhaltsaufwand

Regenwasserrückhalt

- Regenwasserspeicher zur Gartenbewässerung oder auch Brauchwassernutzung im Haus
- RW-Speicher mit Abflussdrossel und Ableitung in den Kanal (wenn genehmigt bzw. möglich)
- Entsiegelung, d. h. Gründach und offenporiges Pflaster der Verkehrsflächen


Regenwasserspeicher

Bei RW-Nutzung im Haus: Grob- und Feinfilter; für WC und Waschmaschine – fertige Hauswasseranlagen Kunststoff- oder Betonspeicher von 4 m³ bis > 20m³


Regenwasserrückhalt mit Nebenschlussdrossel

Entsiegelung (1)

Zunächst Speicherung von ca. 50-80% des Niederschlags Dachbegrünung, extensive oder intensive

Entsiegelung (2)

Fassadenbegrünung, blühend oder grün

Kleinklimaverbesserung Luftfeuchte, Kühle und Biodiversität

Infos bei Green City e.V: Begrünungsbüro München

Entsiegelung (3)

Im Rahmen einer "Hofverschönerung" können die Maßnahmen von LHSt München gefördert werden.

Drainagepflaster, Verringerung des Regenabflusses um ca. 50-70%

Verhindern von Überflutung durch anstehendes Regenwasser in den Keller

- Wasserdichte Fenster
- Wasserdichte Lichtschächte
- Abdeckung der Kellerlichtschächte
- Grundstücksgefälle immer weg vom Gebäude

wasserdichte Fenster und Lichtschächte

1

Hochwasserdichtes* Leibungskellerfenster

ACO Therm® Leibungskellerfenster

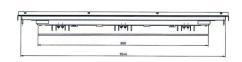
Das Kellerfenster mit Leibung ist als Standard- oder hochwasserdichte* Version für den Einbau in die Kellerwand erhältlich – immer mit einbruchhemmender** RC2-Funktion für den optimalen Schutz der Werte im Keller. Alternativ ist auch der ACO Therm® Block mit integriertem hochwasserdichtem* Kellerfenster erhältlich.

... für die Sanierung: ACO Therm® 3.0 HWD-S plus Weitere Informationen s. Seite 18

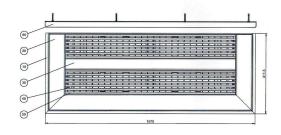
... für den Neubau: ACO Therm® 3.0 Weitere Informationen s. Seite 22

2

Druckwasserdichter Lichtschacht


ACO Therm® Lichtschacht

Für ausreichend Licht im Keller sorgt der ACO Therm[®] Lichtschacht in verschiedenen Abmessungen. Er kann druckwasserdicht montiert werden, auf dem ACO Therm[®] Block sogar wärmebrückenfrei und ohne Bohrungen.

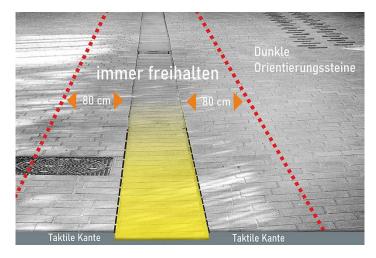

Bei hohem Bemessungswasserstand können zusätzlich druckwasserdicht montierbare Aufstockelemente zur Anwendung kommen.

Abdeckung Kellerlichtschächte

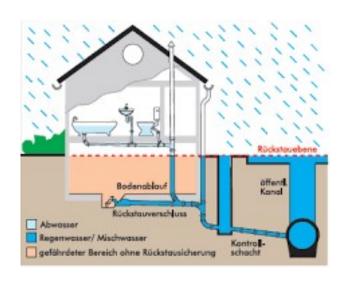
Vorbeugen gegen Überflutung durch "fremde" Regen bzw.-Schmutzwässer

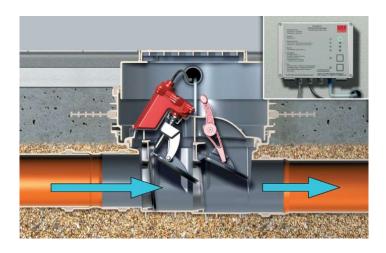
- Grundstücks-/Höhenlage gegenüber Nachbarn und der Zufahrtsstraße
- Technische Regeln zum Rückstauschutz aus dem Kanal

Höhenlage


- Nach den Entwässerungssatzungen (EWS) der Kommunen/Städte darf das Niederschlagwasser nicht auf andere Grundstücke überlaufen. Das gilt auch für den öffentlichen Straßenbereich.
- Lässt die Höhenlage ein Überlaufen erwarten, dann sind entsprechende Entwässerungsrinnen und ähnliche Einrichtungen an der Grundstücksgrenze zu errichten.

Rinnenentwässerung




Rinnen und Hofsinkkästen/Bodeneinläufe sind regelmäßig zu warten und zu entschlammen!!

Rückstauschutz

Rückschlagklappe, el. oder mechanisch

Nach den Regeln der Technik und der EWS sind die Hauseigentümer selber dafür verantwortlich, dass die Rückstausicherheit aus dem Kanal gegeben ist!

Resümee

- Ein vollkommener Schutz vor starken
 Regenereignissen ist nicht möglich –
 Vorsorge kann dennoch getroffen werden, um die möglichen Schäden so gering wie möglich zu halten.
- Die Stadt ist selber aufgefordert die Kanalisation so weiter zu ertüchtigen, dass möglichst keine Überflutungsschäden entstehen.
- 3. Wichtig sind auch kleinere, eigene Umbauten/Ertüchtigungen ("Schwammstadt"), die im Zusammenwirken anderer Maßnahmen wirken. Nur im städtischen Netzwerk einer Regenwasserbewirtschaftung ist die Vorsorge dauerhaft erfolgreich.

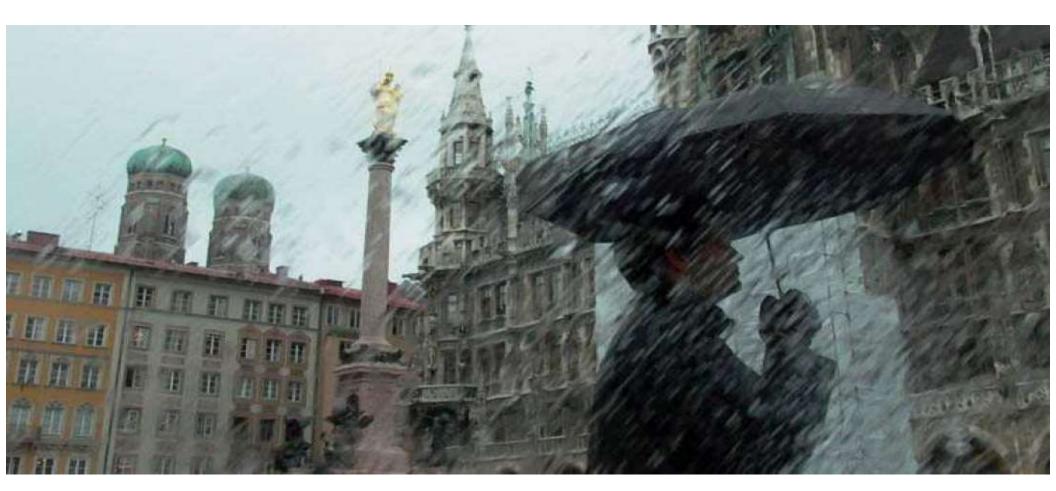
Literaturempfehlungen

- Bayerisches Landesamt für Umwelt (LfU), "Naturnaher Umgang mit Regenwasser Verdunstung und Versickerung statt Ableitung", Download:
 - http://www.lfu.bayern.de/umweltwissen/doc/uw_88_umgang_mit_regenwasser.pdf
- Kooperationsvorhaben von den Ländern Baden-Württemberg, Rheinland-Pfalz und Bayern und dem Deutschen Wetterdienst DWD, "Klimawandel und die Konsequenzen für die Wasserwirtschaft" – KLIWA
- Hinweise zur Regenwassernutzung des LfU
- Bauingenieurin Lamia Messari-Becker "Wir müssen beim Bauen mit der Natur verhandeln" (deutschlandfunkkultur.de); Podcast vom 07.10.2021
- "Ratgeber Regenwasser Ratgeber für Kommunen und Planungsbüros ", Klaus W. König; erschienen bei Fa. Mall
- Institutionen: Deutsche Vereinigung der Wasserwirtschaft (DWA)

fbr – Vereinigung Betriebs- und Regenwassernutzung e.V.

Wasserwirtschaftsämter Bayern

Bayerisches Landesamt für Wasserwirtschaft


Universität der Bundeswehr München, Neubiberg, Fak. Bauingenieurwesen

TU München, Garching, Lehrstuhl für Siedlungswasserwirtschaft

Münchner Stadtentwässerung, Friedenstr. 40, 81671 München

Vorbeugen ist besser als nach hinten fallen ...

Vielen Dank für Ihre Aufmerksamkeit.

Dipl.-Ing., Dipl.-Wirtsch.Ing. Boris John www.john-consult.com