

Industrieverband Lehmbaustoffe e.V.

Ordentliche Mitglieder

- August Lücking GmbH & Co. KG
- ClayTec GmbH & Co. KG
- Conclay Der tragende Lehmstein
- Hart Keramik AG
- Leipfinger-Bader GmbH
- Levita Lehm
- Naturbo GmbH
- Schlagmann Poroton GmbH & Co. KG
- Tierrfino
- WEM Flächenheizung- und Kühlung GmbH
- Ab 1.8.2025 Schleusner GmbH

Außerordentliche Mitglieder u.a.

■Florian Nagler Architekten

GmbH

- ■Dall'Armi Ingenieure Gmb
- Dr. Ernst Böhm (B&O Gruppe)
- ■IAB Weimar
- Mendler Ingenieur Consulting
- ■MFPA Weimar –

ClayXpertCenter

- ■Transsolar GmbH
- ■BBF Beratende Ingenieure
- ■TUM Lehrstuhl Entwerfen und

Konstruieren

■ZRS Ingenieure GmbH

Der Vorstand des Industrieverbands Lehmbaustoffe:

- Vorstandsvorsitzende: Lea Hart, Hart Keramik AG
- Stellvertretender Vorstandsvorsitzender: Thomas Bader, Leipfinger-Bader GmbH
- Stellvertretender Vorstandsvorsitzender: Maximilian Breidenbach, ClayTec GmbH & Co. KG

Gründungsmitglied und

Geschäftsführerin (seit 01.06.2023)

RAin Dr. Ipek Ölcüm

Fachanwältin für Bau- und Architektenrecht

... und wir wachsen weiter!

Bauen mit Lehm und Industrie? Wandel in der Wahrnehmung:

1950er: Baustoff der Nachkriegszeit

1990er: Do-it-yourself und Ideologie / Esoterik

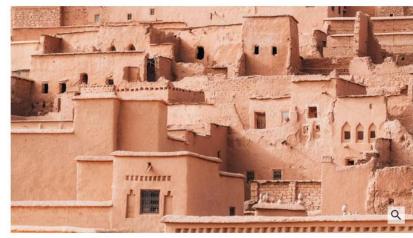
2021er: Lehmbaustoffe / Lehmbauteile sind "industriell" gefertigt und verfügbar, kreislauffähig,

Süddeutsche Zeitung

Handelsblatt

Anme enü Q

Handelsblatt


us Ukraine Israel Europawahl Politik Wirtschaft Meinung Panorama Sport München 🗸

mmobilien und Wohnen > Lehm: Warum der älteste Baustoff der Welt wieder so beliebt ist

Nachhaltigkeit

Warum Lehm als Baustoff wieder so gefragt ist

18. Januar 2024, 15:38 Uhr | Lesezeit: 4 min

Häuser wie Sandburgen: Aît-Ben-Haddou ist eine Jahrhunderte alte Lehmsiedlung im Süden Marokkos. Die Bauten werden teilweise noch bewohnt. (Foto: Imago/ronnybas/Pond5 Images)

Er trägt zu einem angenehmen Raumklima bei, eignet sich zum Dämmen - aber auch als schicker Putz für Innenwände: Wie man seine Stärken am besten einsetzt. Und was Lehm so nachhaltig macht.

Alternative Baustoffe

Klimafreundlich mit Lehm bauen

Lehm wird als Baumaterial wieder populärer. Mittlerweile entstehen sogar Großprojekte damit. Doch Lehm lässt sich nicht uneingeschränkt verwenden.

Katja Bühren 20.03.2024 - 04:00 Uhr

Die Fassade des Bürogebäudes von Alnatura besteht aus Lehm. (Foto: Alnatura/Lars Gruber) Foto: Handelsblatt

Das Comeback der Lehmhäuser

Klimaschutz und Ressourcenknappheit führen zu einem Umdenken in der Baubranche und verhelfen dem traditionellen Baustoff zu neuer Popularität.

Dina Slanjankic

03.05.2024 - 15:57 Uhr

Süddeutsche Zeitung

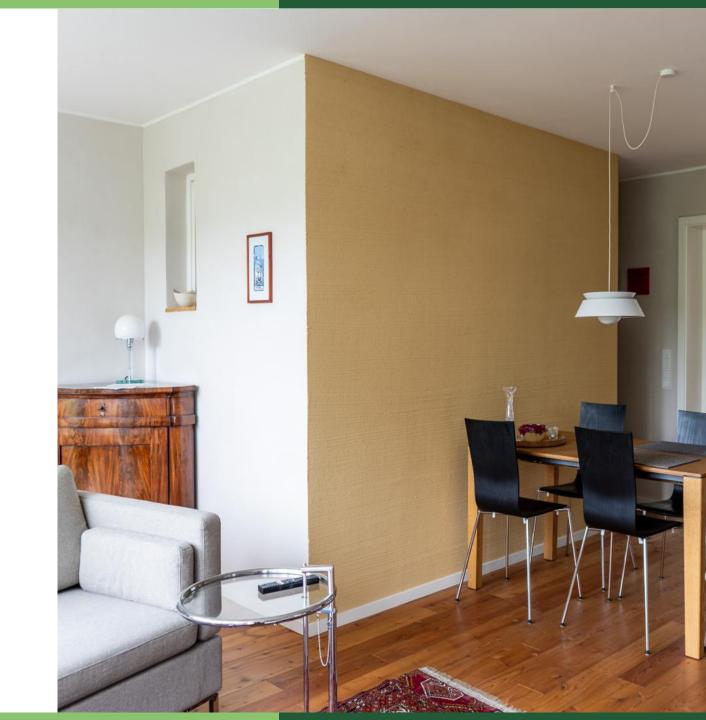
raine Israel Europawahl Politik Wirtschaft Meinung Panorama Sport München 🗸

n Bauten in der Nachbarschaft: zwei . Foto: Dall'Armi Ingenieure GmbH

> Baustoff Lehm - Der Älteste und der Beste

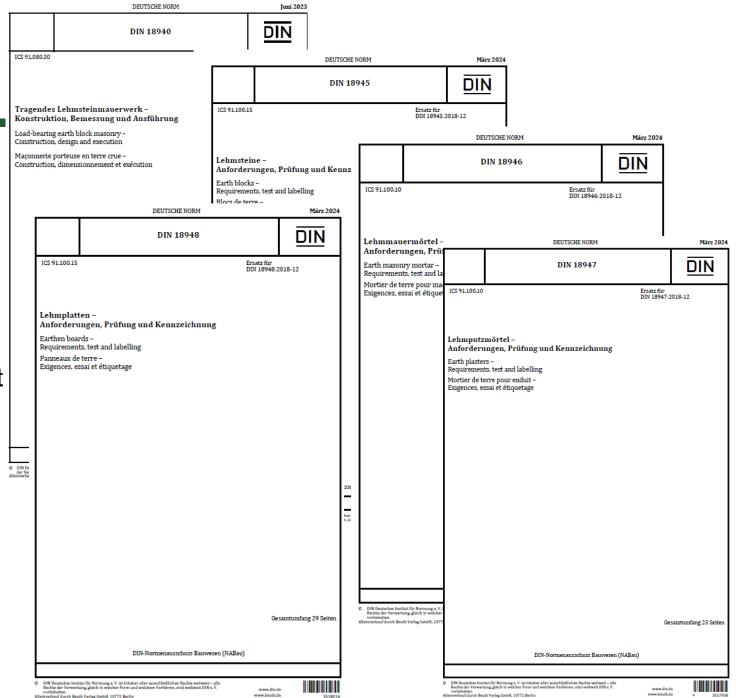
Der Älteste und der Beste

11. Mai 2010, 1:28 Uhr | Lesezeit: 3 min


Gesundes Raumklima: Lehm nimmt Wasser auf und gibt es wieder ab. Dazu kommt noch seine Fähigkeit, sehr viel Wärme speichern zu können. Im Winter sind Lehmhäuser warm und im Sommer kühl.

Lars Klaaßen

Lehm, weil


innovativ und ökologisch und ...

- energiearm in der Herstellung
- kreislauffähig (replastifizierbar)
- wiederverwendbar
- thermische Speichermasse (wesentlich fürs lowtech Bauen)
- feuchteregulierend
- wärmespeichernd
- sommerlicher Wärmeschutz
- schadstoffabsorbierend
- schalldämmend
- Rohstoff Lehm regional verfügbar

Normung heute:

- DIN 18942-1:2024-03 und DIN 18942-100:2024-03 Lehmbaustoffe Begriffe und Konformitätsnachweis
- DIN 18945:2024-03 Lehmsteine
- DIN 18946:2024 Lehmmauermörtel
- DIN 18947:2024 Lehmputzmörtel
- DIN 18948:2024 Lehmplatte
- DIN 18945 und 18946 werden demnächst bauaufsichtlich in die M VV TB eingeführt
- It. DIN 4102/Teil 4 LEHM grds. A1
- DIN EN 1995-1-2:2023
- Bemessungsnorm DIN 18940:2023-06
- TM 06:2015-06 Lehmdünnlagenbeschichtungen
- WTA Blätter für Sanierungsthemen
- Lehmbauregeln des DVL bei Vorortfertigung (Stampflehm, Strohlehm)

Anwendungsbereiche (ohne Geschossdecke)

Lehmsteinmauerwerk

- Produktnorm DIN 18945 (Anforderungen, Prüfverfahren, Kennzeichnung)
- Bemessungsnorm DIN 18940:2023-06 = Eurocode 6 (Konstruktion Bemessung Ausführung, zu beachten DIN 18946)
- Tragend bis GK 4 (13m OKF) für konstruktiv witterungsgeschütztes Außenmauerwerk und Innenmauerwerk
- Unter Einhaltung von geregelten Mindestdicken REI 30 und REI 60
- sogar Brandwand (!)
- auch nicht-tragend
- Formate: NF, 2 DF bis 16 DF
- Form- oder stranggepresst

Lehmbaustoffe – Bad Aibling

© Industrieverband Lehmbaustoffe, B&O Gruppe in Bad Aibling; Forschungshaus Holz Lehmstein

Out of the Norm

Lehm-Dünnbettmörtel – Zwei neue Anwendungen

• wirtschaftliches Mauern von Lehmsteinen – über bauaufsichtliche Zulassungen für das tragende Bauen, da noch nicht genormt (DIN 18946, 18940)

UND:

- Enabler des sortenreinen Bauens und damit eines späteren Rückbaus von wasserfesten Wandbaustoffen
- <u>Projekte Nachhaltiges Mauerwerk</u>
 <u>Innovationsnetzwerk (nachhaltiges-mauerwerk.de)</u>

Low Hanging Fruits: Lehmputz / Lehmanstriche

DIN 18947:2024 – Lehmputzmörtel

Lehmplatte

- Brandverhalten: A1 und A2
- Feuerwiderstand RE 30/60/90/120
- Bauphysik (Feuchteregulierung und Schadstoffabsorption)
- Schalldämmung bis zu 56db
- DIN 18948:2024-03 (Anforderungen, Prüfverfahren, Kennzeichnung)
- Aber auch Systeme mit Holzweichfase bzw. Flächenheiz- und kühlsysteme

©Lukas Zogg / Blumer-Lehmann AG

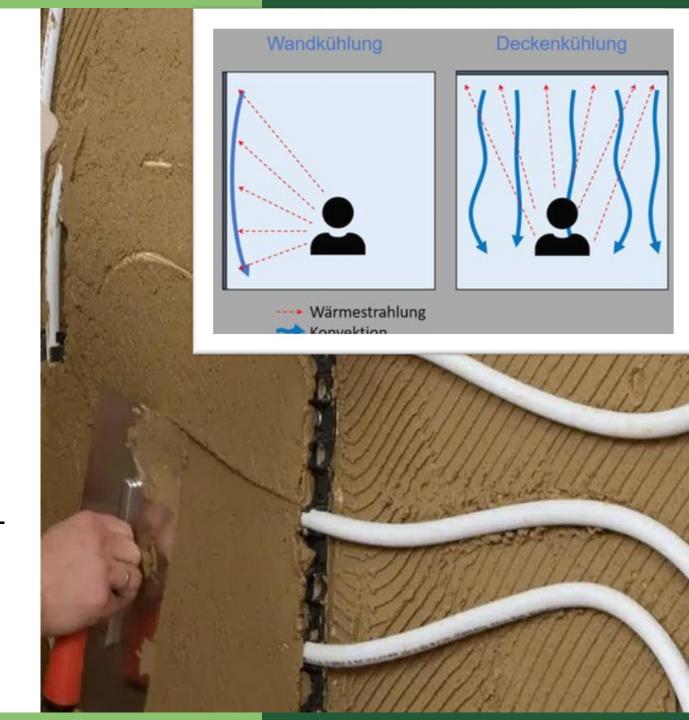
Lehmplatte – Hortus

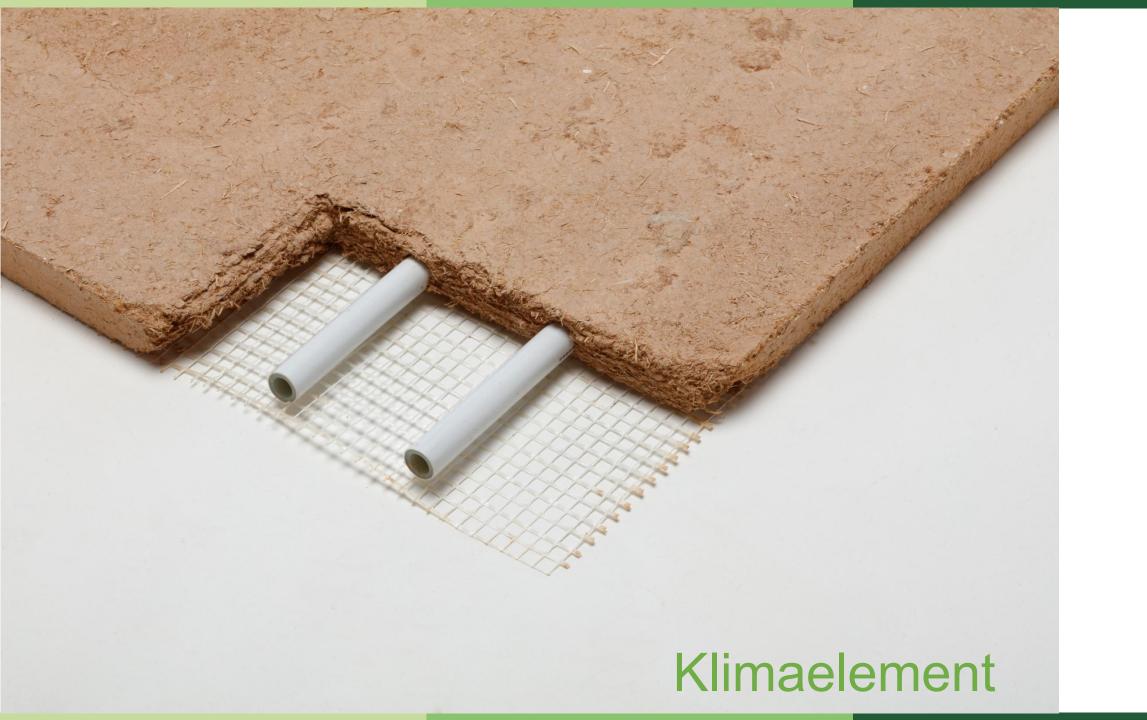
https://www.3sat.de/gesellschaft/politikund-gesellschaft/uns-eine-zukunft-bauen-102.html

Integration in die Vorfertigung der Holzbauelemente bei Blumer-Lehmann

Brandschutznachweis ETH Zürich

Objektspezifische Einzelzulassung für Lehmplatten – EI 30 und EI 60

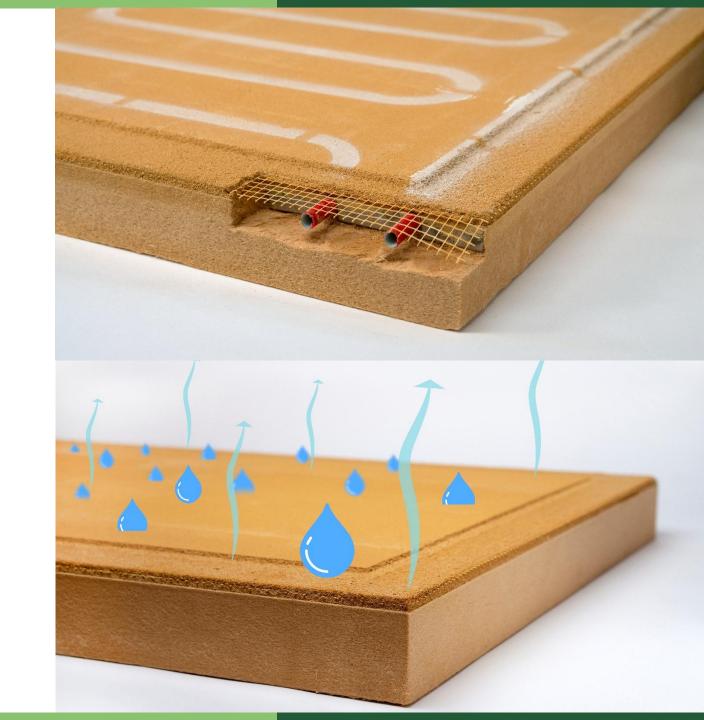

- Verbaut im Liftschacht
- Verbaut im Treppenhaus
- Und in den Räumen



©Lukas Zogg / Blumer-Lehmann AG

Flächenheizung

- Heizen/Kühlen an Wand und Decke
- Niedertemperatursystem (35 °C Vorlauftemperatur statt 55 °C bei Radiatoren)
- Effizienz der Wärmepumpen wird fast verdoppelt
- dazu 18% Energie-Einsparung durch Wärmestrahlung
- Einziges System mit effizientem Tauwasser-Management durch Lehmputz erlaubt Kühlung auch an heißen Tagen
- fehlende Luftzirkulation reduziert Allergene in der Raumluft


Heiz-/kühlplatte

- fertig vorproduzierte Lehmplatten-Heiz/Kühlmodule
- mit Holzweichfaserplatte zur Dämmung zur Rohbauwand/-decke
- als All-In-One-Version auch mit inkludierter 6 cm Innendämmung erhältlich
- schnelle Montage aufgrund von ca. 48 h Trocknungszeit
- ideal in der Sanierung zur Nachrüstung einer Flächenheizung
- an Wand und Decke montierbar

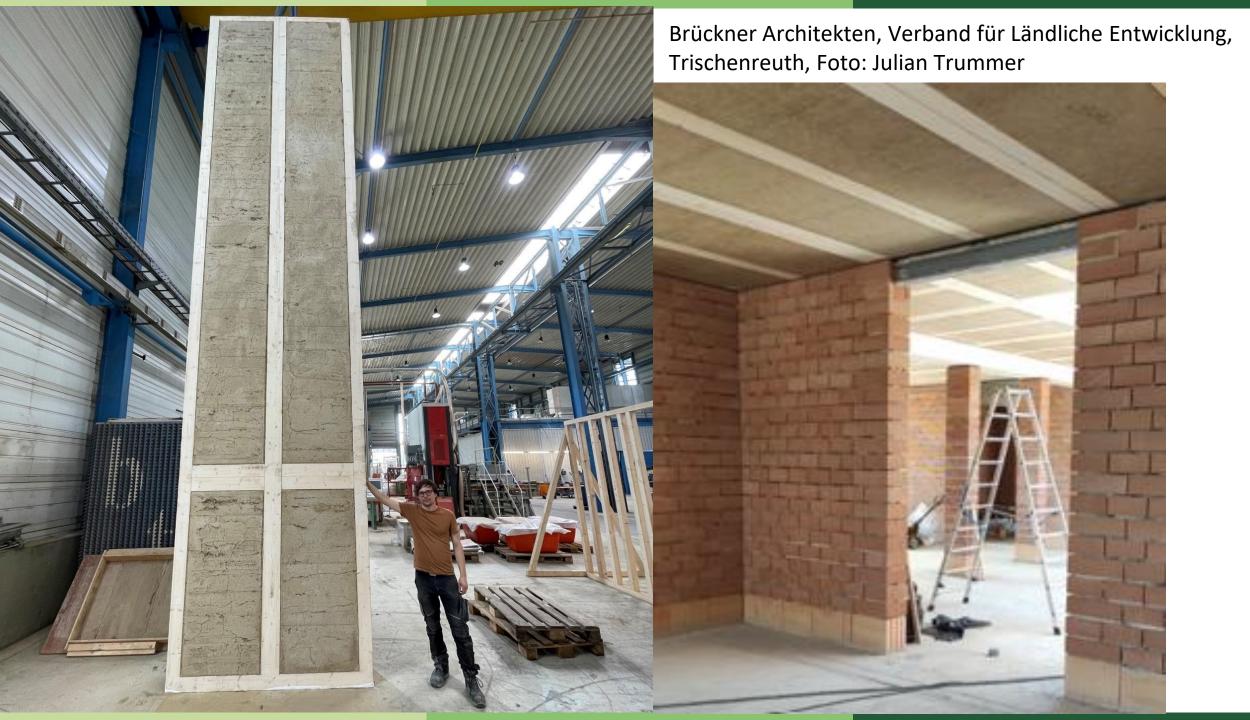
Innendämmung

- fertig vorproduzierte Innendämmplatte mit 60 mm Holzweichfaser und 10 mm Lehmputz
- Optional auch mit integrierten Heiz-/Kühlrohren erhältlich
- Diffusionsoffene Montage ist gesund für Mensch und Mauerwerk
- Evtl. entstehendes Tauwasser wird in den Raum rückverdunstet
- Erhöhte Oberflächentemperatur verbessert Wohlgefühl

Lehmplatte – Forschung mit TUM

ndustrieverband Lehmbaustoffe e.V. Lehmplatten als brandschutztechnisch wirksame Bekleidung von Hotzbauteil-

Inhaltsverzeichnis


INI	Inhaltsverzeichnis			
1	Projektgesamtkosten, beantragter Fördermittelantell, Projektlaufzeit			
2	Kurzfassung des Gesamtvorhabens			
3	Angaben zum Antragsteller bzw. Bewilligungsempfänger			
4	Angaben zu Kooperationspartnern			
4	• • •			
5	Umweitrelevanz			
6	Ziel	Zielsetzung des Vorhabens		
	6.1	Grundlegende Ziele		
	6.2	Bauordnungsrechtliche Anforderungen der Musterholzbaurichtlinle	!	
	6.3	Derzeitiger Stand Lehmplatten	1	
	6.4	Zielerreichung	1	
		6.4.1 Aligemein	13	
		6.4.2 APO: Projektkoordination (IV Lehm)	13	
		6.4.3 AP1: Zusammenstellen der Prüfzeugnisse (LSHB)	13	
		AP2: Zusätzlich notwendige Versuche planen und durchführen (LSHB, IV Lehm, G&M, Holzlus)	14	
		6.4.5 AP3: Dissemination (LSHB)		
7	Arbe	elts- und Zeitplan	1	
8	Fina	anz- und Kostenplan	1	
9	Tec	hnisch, wirtschaftliches Risiko	1	
	9.1	Unerwartete Versuchsergebnisse	1	
	9.2	Aufgreifen der Praxis	18	
10	Meh	nrfachförderung	1	
	11 Verbreitung und Ausblick			
		Verbreitung		
	11.2	2 Fortführung und Perspektive	21	
12	Lite	raturverzeichnis	2	

- Brandschutztechnische Schutzwirkung von Lehmplatten
- Dauer des Projekts / 1. Phase: 01.04.2025 31.03.2026
- Phase 1 konzentriert sich auf die Frage:
 Welche Verschiebung des Zeitpunkts des Beginns der Verkohlung hinter
 der brandschutztechnisch wirksamen Bekleidung mit aktuell auf dem
 Markt verfügbaren Lehmplatten möglich ist. Status quo mit Validierung
 dessen durch 2 Brandprüfungen
- Ziel: Bauteilkatalog als Planungshilfe für alle Gebäudeklassen als Grundlage für den Einsatz von industriell gefertigten Lehmplatten im Brandfall, um die Lehmplatte als alternative brandschutztechnisch wirksame Bekleidung im modernen Holzbau zu integrieren
- Phase 2 soll auf den Ergebnissen der Phase 1 aufbauen und untersuchen, inwiefern eine Optimierung der Lehmplatte bzgl. der brandschutztechnisch wirksamen Bekleidungseigenschaften möglich ist und eine Einbindung in die Fertigungsprozesse des Holzbaus

Kooperationspartner: Lehm: ClayTec, Hart Keramik, Leipfinger-Bader, WEM,

Holz: Holzius, Gumpp&Maier

Vorteile in Zahlen

Besserer Klimaschutz Ihr Beitrag für die Umwelt: Bei Produktion und Verarbeitung fallen kaum CO2-Emissionen an. Angaben: Kg CO₂ äquivalent pro kg Putzmörtel DIN EN 15804:2018 Module A1-A3 ("Wiege bis Werkstor") Kalkputz Zementputz Gipsputz Lehmputz1 1 erdfeucht; Quelle: UPD_LPM_CLAY2018001_PKR04-DE, Dipl.-Ök. Manfred Lemke ² 0,11 inkl. des Karbonatisierungseffektes nach Modul B5 DIN EN 15804:2018

Vergleich GWP - Deckentypen

Holz-Lehm-Decke

49 kgCO₂e/m²

GWP-Fossil (A1-A3)

-75 kgCO₂e/m²

Im Holz gebundene Emissionen (A1-A3)

Holzbalkendecke

55 kgCO₂e/m²

GWP-Fossil

(A1-A3)

-162 kgCO₂e/m²

GWP-Bio

Im Holz Gebundene Emissionen (A1-A3)

Brettsperrholz-Decke

64 kgCO₂e/m²

GWP-Fossil

(A1-A3)

-147 kgCO₂e/m²

GWP-Bio

Im Holz gebundene Emissionen (A1-A3)

Stahlbetondecke (nur Vergleich)

 $112 \text{ kgCO}_2\text{e/m}^2$

GWP-Fossil

(A1-A3)

0 kgCO₂e/m²

GWP-Bio

(A1-A3)

Projektdetails

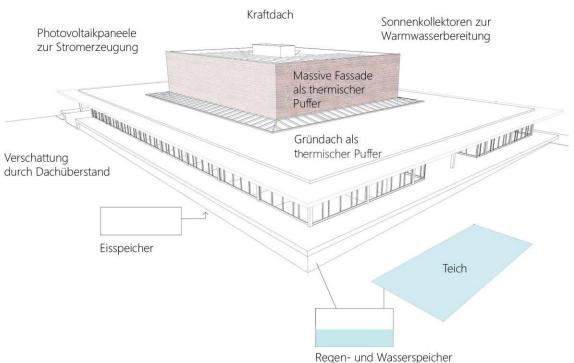
- Lebenszyklusbetrachtung
- Investitionskosten für
 Anlagentechnik vermeiden in
 dem bspw. die
 Feuchteabsorbtionsfähigkeit
 und die Speicherfähigkeit
 des Lehms in die Planung
 (vor allem Trockenbau)
 eingebunden werden
- Erneuerbare Energien / Flexible Nutzung

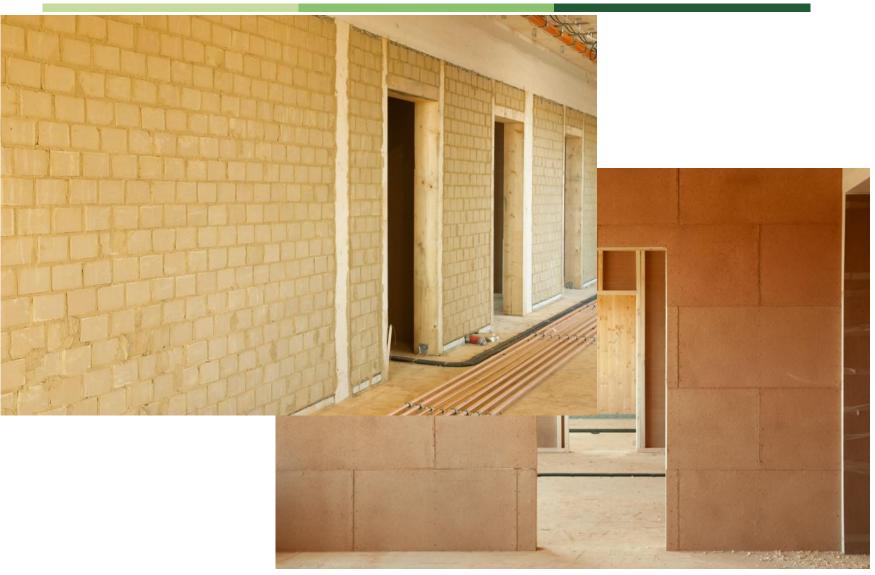
© C.F. Møller Architects, BMUV – Dienstsitz Berlin

Projektdetails

- Kindergarten Grassau
- Grundfläche 400qm und Firsthöhe 10m
- Gedämmte
 Holzrahmenbauweise
- Verschalung mit Lärchenholz
- Wannddicken 35 bis 45 cm,
 Dämmmaterial
 Holzweichfaser und Zellulose
- Beplankung der Innenwände mit Lehmplatten und Lehmedelputz als letzte Schicht

© Christian Tharovsky




LowTech

Es ist angestrebt, die technische Gebäudeausstattung sehr einfach zu halten. Dies reduziert Wartung und Instandhaltung der Gebäudetechnik. Es Sollte möglichst eine passive Klimatisierung des Gebäudes erreicht werden. Energie

Die Nutzung erneuerbarer Energie ist zentraler Bestandteil der Konzeption. Photovoltaikpaneele auf dem Dach erzeugen die Energie für die Gebäudetechnik. Überschüssige Energie kann eingespeist werden.

Warmwasserkollektoren auf dem Dach reduzieren den Heizbedarf.

Zirkuläres Bauen in Viersen (Kreis Viersen: Bauarbeiten fürs Förderzentrum West gestartet)

Nachhaltigkeit ist sparsam im Unterhalt:

- Einsparung von Betriebskosten für Haustechnik, bessere Wärme- und auch Kältedämmung dank Speichermasse im Lehm
- Besonderheit in NRW seit 2023: Erlass bei zirkulären Gebäuden auf Materialrestwert abgeschrieben werden darf (Jährliche Entlastung für den Haushalt der Kommunen)

Quelle: Kreis Viersen, Straßenverkehrsamt und Förderschule

UN-Klimasekretariat der Vereinten Nationen in Bonn

- 2010 Sanierung des 1953 errichteten Alten Abgeordnetenhauses in Bonn
- Hohe Priorität auf Verwendung von nachhaltigen Baumaterialien
- Trockenbau: 6000 qm Lehmplatten zur Beplankung auf Metallständerwerk verspachtelt mit Lehm
- Fotos: https://rkw.plus/de/projekt/un-klimasekretariat/#

© Generiert von MS Copilot, wegen fehlender Bildrechte

Standort D-53113 Bonn

Bauherr BBR Bundesamt für Bauwesen

und Raumordnung, Bonn

Architekt RKW Rhode Kellermann

Wawrowsky, Düsseldorf

Lehmbau Stuck und Akustik Weck, Köln

Bauzeit 2009 - 2012

Projektdetails

- Mehrfamilienhaus 3- und -5 geschossiges Ensemble
- Nachverdichtung in Bayreuth
- Massivholzhaus ohne konventionellen Trockenbau: Lehmplatten und Lehmputz 3 cm

Projektdetails

- Kindergarten Grassau
- Grundfläche 400qm und Firsthöhe 10m
- Gedämmte Holzrahmenbauweise
- Verschalung mit Lärchenholz
- Wannddicken 35 bis 45 cm,
 Dämmmaterial
 Holzweichfaser und Zellulose
- Beplankung der Innenwände mit Lehmplatten und Lehmedelputz als letzte Schicht

© www.lehmbauprojekte.com, Dall'Armi Ingenieure GmbH

sauerbruch hutton

LANDESBEIRAT HOLZ BERLIN-BRANDENBURG

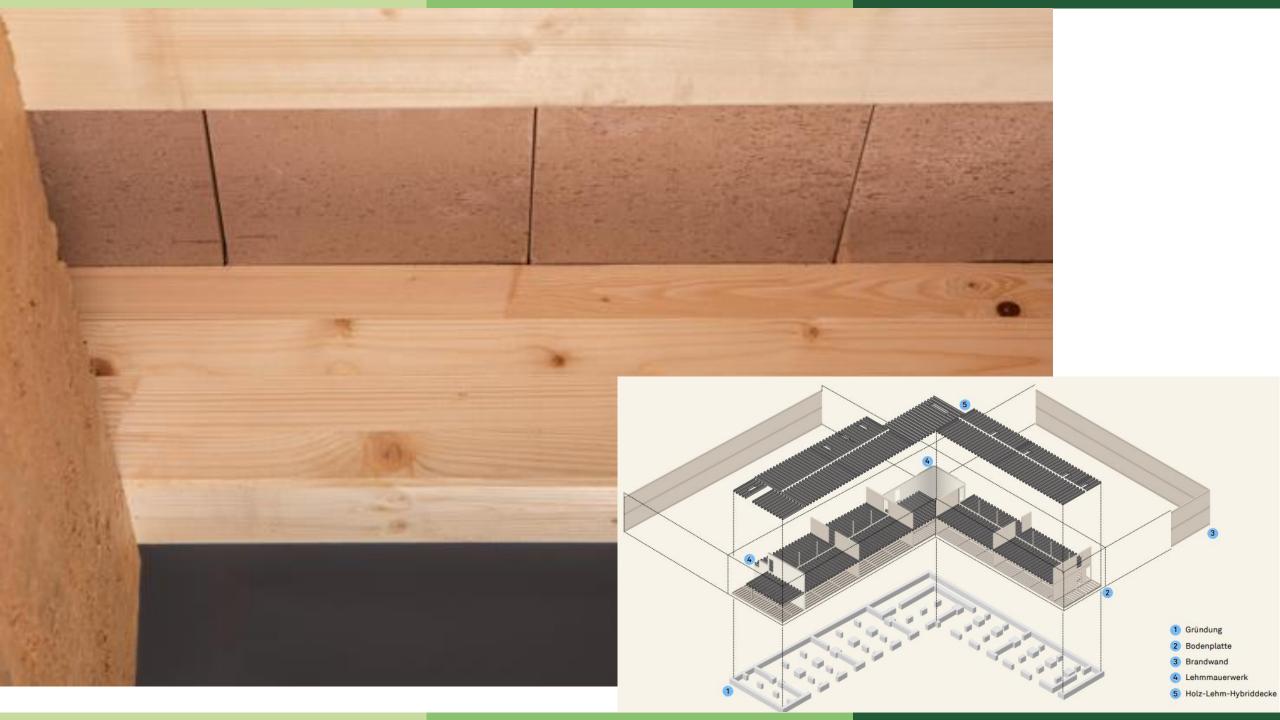
Bodenplatte
 Brandwand

5 Holz-Lehm-Hybriddecke

Industrieverband Lehmbaustoffe e.V.

Aufgabe:

Neu- und Umbau eines Firmensitzes


Bauherr:

B&O Bau

Fertigstellung Avis:

2026

© B&O Bau / sauerbruchhutton

Visit our members

claytec.de lehmbaustoffe-conclay.de leipfinger-bader.de lemix.eu wandheizung.de Lücking - Ziegel und Beton Tierrfino.de Naturbo.de Levita lehm Schlagmann.de zrs.berlin nagler-architekten.de Transsolar Dall'Armi Ingenieure GmbH Mendler Consulting GmbH TUM: arc.ed.tum.de Dr. Ernst Böhm: buo.de mfpa.de – clayXpert center iab-weimar.de bbf beratende ingenieure

clay installation projects by Guy Valentine

www.guyvalentine.com

