TESTS VON AM MARKT VERFÜGBAREN BATTERIESPEICHERN IM RAHMEN DES FORSCHUNGSPROJEKTS "SAFETY FIRST"

Maximilian Bruch, M.Sc. Stephan Lux, Dipl.-Ing Nina Kevlishvili, Dr. Bernhard Mademann, B. Eng.

Fraunhofer-Institut für Solare Energiesysteme ISE

Fachforum Solar-Stromspeicher

München, 27.11.2018

www.ise.fraunhofer.de

Fraunhofer ISE Forschen für die Energiewende

Institutsleiter:

Prof. Dr. Hans-Martin Henning Dr. Andreas Bett

Mitarbeitende: rund 1200

Budget (2017): 89,2 Mio. EUR

Gegründet: 1981

Projekt "Safety First" Überblick

- Drei Projektpartner:
 - KIT (Karlsruhe, Projektleiter)
 - ZSW (Ulm)
 - Fraunhofer ISE (Freiburg)
- Themen:
 - Sicherheit
 - Leistung, Effizienz
 - Alterung
- Ziel: Verbesserung der Sicherheitsstandards

Supported by:

on the basis of a decision by the German Bundestag

(Quelle: Deutsche Feuerwehrzeitung 2013)

Projekt "Safety First" Arbeiten am Fraunhofer ISE

- Zell-Charakterisierung
- System-Charakterisierung
- Alterungstests auf Zellevel (3 Zelltypen)
- Alterung auf Systemlevel
- Simulation der Alterung

Projekt "Safety First" Arbeiten am Fraunhofer ISE

- Test bei verschiedenen Umgebungstemperaturen Extrem gering -5°C und extrem hoch 45°C
- Überwachung der Einzelzellspannung
 Analyse der BMS Funktion
- Funktionsanalyse

(z.B. was passierte wenn Komponenten oder Kommunikation ausfällt)

Normen Überblick wichtiger Normen

- Transport:
 - UN38.3
- Sicherheit:
 - AR-E 2510 50
 - AR-E 2510 2
 - IEC 62619
 - EN 61000
 - EN 61010-1
 - UL 9540
- Safety Guidelines Li-Ion Home Battery Storage Systems (rev. 1, NOV 2014)

Klassifizierung von Heimspeichern Kopplung

- System Anbindung
 - AC gekoppelt
 - DC gekoppelt
 - PV Generator gekoppelt
- Batteriespannung
 - Kleinspannung typ. 48V
 - Hochspannung typ. 180 700V

Effizienz

Standardisierte Effizienzmessung

PNNL 22010 REV 2

Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems

E3DC Testprozedur

Herstellerverfahren

BVES / BSW

Efficiency Guideline for PV-Storage Systems

Effizienz Eigenes Testfeld

Effizienz Messergebnisse

Effizienz Messergebnisse

Effizienz Leerlauf / Standby Verbrauch

Effizienz Regelungsverluste

Unterschied zwischen Soll- und tatsächlicher Leistung

Last

QUELLE: Effizienzleitfaden für PV-Speichersysteme Stand: Version 1.0 Ausgabe: 03/2017 herausgegeben von BVES

Netzaustausch

Effizienz Regelungsverluste

Effizienz Regelungsverluste

Effizienz Realistisches Profil

- 5 kWp PV Anlage .Daten f
 ür je 1 Tag im Januar, Juni, Oktober in Freiburg gemessen.
- Lastprofil (Sekundenauflösung) einer
 5 köpfigen Familie
 (ca. 5000kWh/Jahr)
 an einem Arbeitstag

Effizienz Realistisches Profil

Temperatureinfluss

Analyse der Temperaturschwankung

Messung der Einzelzellspannung und der Zelltemperaturen

Temperatureinfluss

Analyse der Temperaturschwankung

- 15°C Temperaturanstieg
- 6°C Temperaturunterschied
- → Inhomogene Zellalterung im System

Batteriealterung Kalendarische Alterung

Alterung: SOC 100%, 35°C Messung: DOD 100%, C/3, 25°C

Batteriealterung Kalendarische Alterung

Alterung: SOC 100%, 35°C Messung: DOD 100%, C/3, 25°C

Batteriealterung Zyklische Alterung

Alterung: DOD 100%, 1C, 35°C

Messung: DOD 100%, C/10, 25°C

Batteriealterung Zyklische Alterung

Alterung: DOD 100%, 1C, 35°C

Messung: DOD 100%, C/10, 25°C

Batteriealterung

Zyklische Alterung - Innenwiderstandsmessung

- Sehr dynamischer, schnell wachsender Markt
- Verhaltensänderung durch
 Firmwareupdates, neue Modelle
- Standards entwickeln sich aktuell
- Temperaturschwankungen beeinflussen evtl. Lebensdauer
- Alterungseffekte müssen im System und auch im Feld untersucht werden.

Vielen Dank für Ihre Aufmerksamkeit!

Fraunhofer-Institut für Solare Energiesysteme ISE

Maximilian Bruch

www.ise.fraunhofer.de maximilian.bruch@ise.fraunhofer.de

