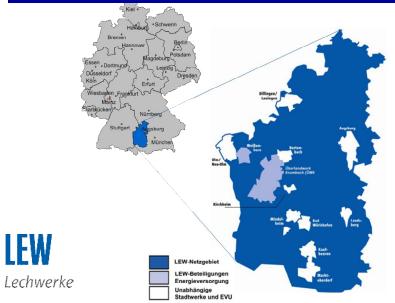
Kleinwindanlagen

aus Sicht eines Energieversorgers

Ulrich Haselbeck
Dipl. Ing (FH)
Kommunalreferent


Agenda

- > Kurzvorstellung LEW-Gruppe
- > Energiewende in der Region
- > Aktivitäten und Projekte der LEW
- > Windkraft bei LEW

Eckdaten Geschäftsjahr 2016 LEW-Gruppe nach IFRs1

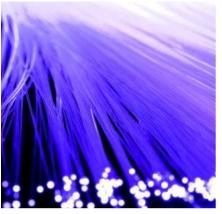
Umsatzerlöse	(Mio. Euro)	2.385	
Betriebliches Ergebnis	(Mio. Euro)	142	
Ergebnis nach Steuern der Lechwerke AG (nach HGB)	(Mio. Euro)	112	
Investitionen in immaterielle Vermögenswerte; in das Sachanlage- und Finanzvermögen	(Mio. Euro)	105	
Strom- und Gasverkauf der LEW-Gruppe	(Mio. kWh)	Strom: 19.935	Gas: 1.316
Energieversorgungsunternehmen/Vertriebshandel	(Mio. kWh)	12.847	611
Geschäftskunden	(Mio. kWh)	5.169	479
Privat- und Gewerbekunden	(Mio. kWh)	1.919	226 ²
Mitarbeiter ³	FTE⁴	1.798	

¹ Zahlen der LEW-Gruppe nicht vom Abschlussprüfer geprüft

² nur Privatkunden

³ Soweit aus Gründen der Übersichtlichkeit von Mitarbeitern die Rede ist, sind damit auch Mitarbeiterinnen gemeint

⁴ Full Time Equivalents (1 FTE = 1 Vollzeitstelle), inkl. der Auszubildenden und der geringfügig Beschäftigten


Das Kerngeschäft der Lechwerke AG

Stromerzeugung

Stromverteilung

Datenkommunikation

Vertrieb

Bayerische Elektrizitätswerke

Umweltfreundliche Stromerzeugung aus Wasserkraft in eigenen Kraftwerken

> Gesellschafter: Lechwerke AG (100%)

> Gründung: 1898 als AG, 1977 Umfirmierung in GmbH

Mitarbeiter: 150 (Stand: Januar 2016)

> Umsatz: ca. 55 Mio. € (2015)

Sitz: Gersthofen

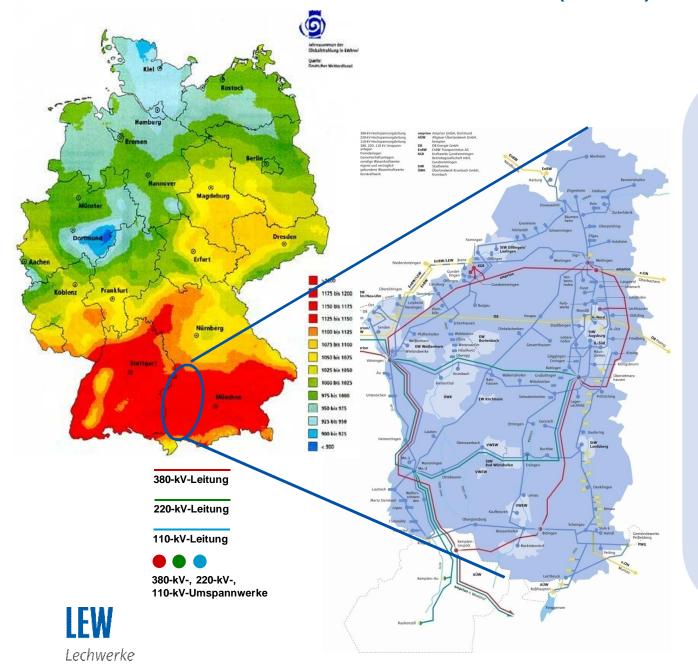
Wasserkraft = Klimaschutz

> 36 Wasserkraftwerke mit einer Ausbauleistung von rund 200 MW liefern ca. 1.100 GWh / a Strom – ausreichend für ca. 320.000 Privathaushalte

Hochwasserschutz durch die BEW

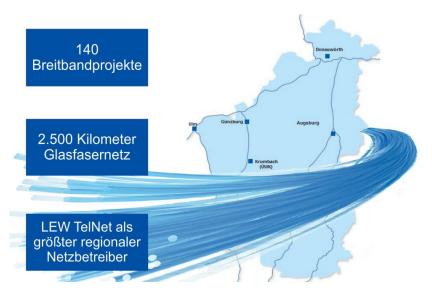
> Wehranlagen 32 Stück

> Damm- und Deichstrecken 190 km


> Hinterlandentwässerungen 112 km

Die LEW Verteilnetz GmbH (LVN) - Daten und Fakten

Kennzahlen


Mitarbeiter:

>	Hochspannung (110 kV) Freileitung Umspannwerke	1.800 km 120
>	Mittelspannung (20 kV) Freileitung Kabel Ortsnetzstationen	2.900 km 4.400 km 9.400
>	Niederspannung (0,4 kV) Freileitung Kabel	8.900 km 16.500 km
>	Versorgte Fläche:	6.900 km²
>	Netzkunden:	550.000
>	Dez. Erzeuger	~ 69.200
>	Investitionen (2015):	ca. 80 Mio. €
>	Zahlung an dez. Erzeuger	804 Mio. €

Zahlen gerundet

ca. 850

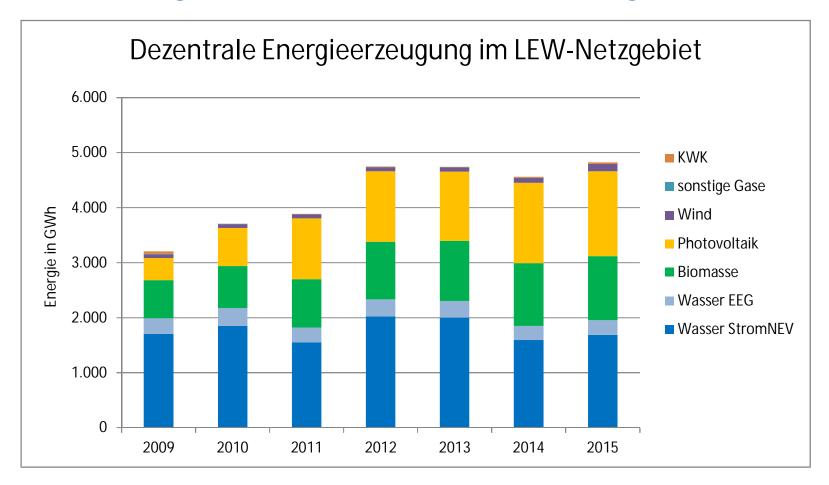
LEW TelNet GmbH

- > Kompetent. Innovativ. In der Region.
 - Eigenes Nachrichtennetz in Bayerisch-Schwaben und angrenzenden Gebieten in Oberbayern und Baden-Württemberg
 - Über 3.500 km Leitungslänge
 - Übertragungskapazität im Backbone von 10 Gbit/s
 - Konzeption, Umsetzung und Betrieb von professionellen Datenkommunikationslösungen für Unternehmen, öffentliche Verwaltungen und Carrier
 - Konzepte zum nachhaltigen Breitbandausbau für Kommunen
 - Im Rahmen des zweiten Bayerischen Förderprogramms hat LEW TelNet 23 neue Breitbandprojekte umgesetzt beziehungsweise mit der Erschließung begonnen.
 - Produkte und Managed Services aus den Bereichen Internet, IT-Sicherheit, Rechenzentrum, Standortvernetzung, Netzwerk, Telefonie, mobiles Arbeiten
- Mitarbeiter: 100 (Stand: 31. Dezember 2016)

Konzepte und Management eines dezentralen Energiesystems und ein Ausschnitt unsere Angebote

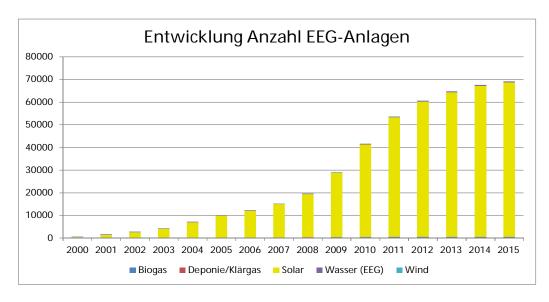
Erneuerbare Energien Vernetzung und Integration

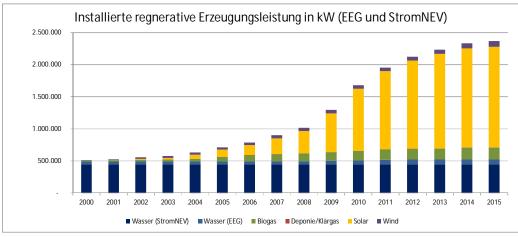
Neue Technologien, digitale Lösungen



Agenda

- > Kurzvorstellung LEW-Gruppe
- > Energiewende in der Region
- > Aktivitäten und Projekte der LEW
- > Windkraft bei LEW


Die Energiewende findet in der Region statt

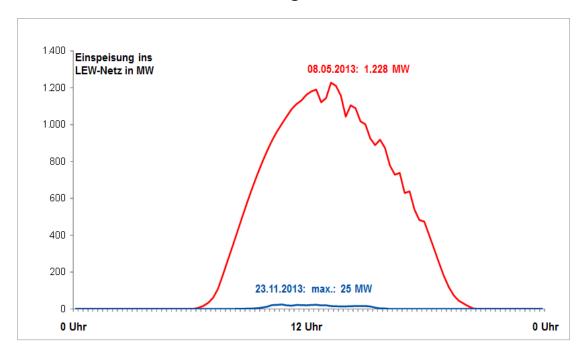


- In 2015 Beitrag regenerativer Stromerzeugung
- in Deutschland ca. 30 %
- in Bayern > 36 %
- **Lechwerke**

- Im Netz der Lechwerke sind es über 60 %

Das LEW- Netz ist stark geprägt durch Zubau von EEG-Anlagen – überwiegend Photovoltaik

- Aktuell sind rund 69.200 EEG-Anlagen im LEW-Netzgebiet mit einer Leistung von ca. 1.950 MW angeschlossen – überwiegend Photovoltaikanlagen
- Es wurden ans LEW-Netz angeschlossen:


2011: 11.600 Anlagen2012: 8.000 Anlagen2013: 5.200 Anlagen2014: 3.000 Anlagen

- In 2015 wurden rund 1.600 Neuanlagen installiert.
- > Durchschnittlich an jedem fünften LEW-Netzanschluss ist eine PV-Anlage angeschlossen
- > Bei jeder 4. PV- Anlage wurde 2015 ein Batteriespeicher eingebaut

Hohe installierte EEG-Leistung führt zu starken Schwankungen bei der Erzeugung im LEW-Netzgebiet

- > Bei *nur 20 Verteilnetzbetreibern sind ca. 80 %* der gesamten in Deutschland *installierten EE-Leistung* angeschlossen. Das LEW-Netz liegt hier auf Platz 10.
- > An *jedem fünften* LEW-Netzanschluss ist im Schnitt eine PV-Anlage angeschlossen
- > Herausforderung: *Enorme Schwankungen der Einspeisung* im Netzgebiet vor allem in Abhängigkeit von der Sonneneinstrahlung

Agenda

- > Kurzvorstellung LEW-Gruppe
- > Energiewende in der Region
- > Aktivitäten und Projekte der LEW
- > Windkraft bei LEW

Dezentralisierung der Erzeugung bedingt Netzausbau

Betriebliche Maßnahmen, z.B.

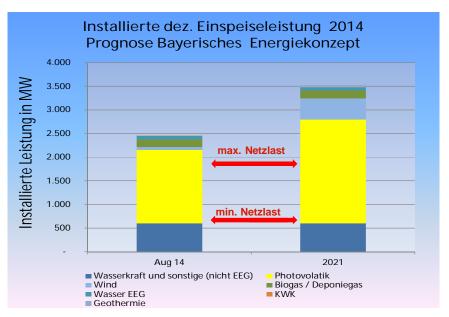
- > Optimierte Spannungsregelung der HS/MS Trafos
- > Optimierung der Schaltzustände /Trennstellenoptimierung

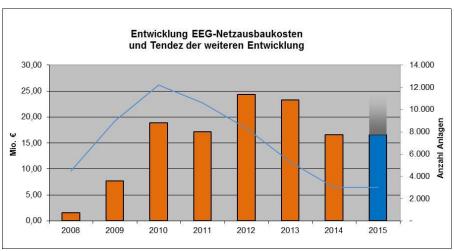
Einsatz neuer "intelligenter" Netzkomponenten, z.B.

- > Regelbare ON-Trafos, Intelligente Schutz-/Steuergeräte
- > Erhöhung Automatisierungsgrad im MS-Netz
- > Optimierte Netzplanung

Netzverstärkungen, z.B.

- > Parallelleitung und Querschnittsverstärkung
- > Austausch von Transformatoren


Grundlegende Netzerweiterung, z.B.

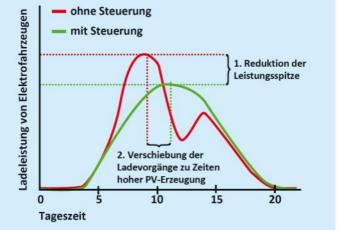

- > Zusätzliche Umspannwerke und Netzstationen
- > Überregionale Anpassung und Erweiterung des MS-Netzes
- > Grundsätzliche Restrukturierung und Erweiterung im NS-Netz

Innovative Lösungen im Verteilnetz, z.B.

> Smart Grid, Intergrale Speicheransätze

Beispiel Smart Power Flow

- Eine 200 kW (400 kWh) Redox-Flow-Batterie (elektrochemischer Speicher) ist in ein Niederspannungsnetz eingebunden.
- Verschiedene Betriebs- und Vermarktungsweisen der Batterie (von reiner Speicherung bis hin zum Sekundärreserveeinsatz in Verbund mit weiteren verteilten Batterien) sollen getestet werden.
- Darüber hinaus sollen Erkenntnisse über Potenziale zur Vermeidung von Netzausbau erschlossen werden.
- Das Projekt wird durch das Bundesumwelt- und Bundesforschungsministerium gefördert.
- > Zielsetzung:
 - Analyse der Auswirkungen verschiedener Betriebsmodi einer Redox-Flow-Batterie auf ein Niederspannungsnetz
 - Analyse versch. Geschäftsmodelle



Ladeinfrastruktur am P&R-Platz in Buchloe

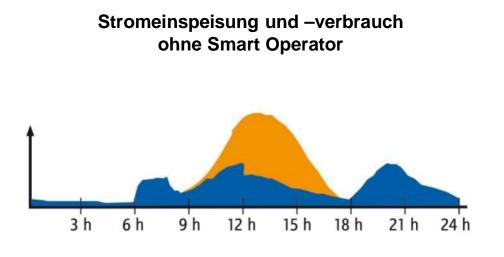
- > Beschaffung von 15 Elektrofahrzeugen und Verteilung an Pendler aus der Region
- Weitergabe der Fahrzeuge nach jeweils 6 Monaten an 14 Projektteilnehmer. Insgesamt beteiligen sich 56 Pendler.
- > Errichtung und Anschluss von 16 Ladepunkten
- > 14 Ladepunkte sind für Projektteilnehmer reserviert
- > 2 Ladepunkte sind öffentlich verfügbar

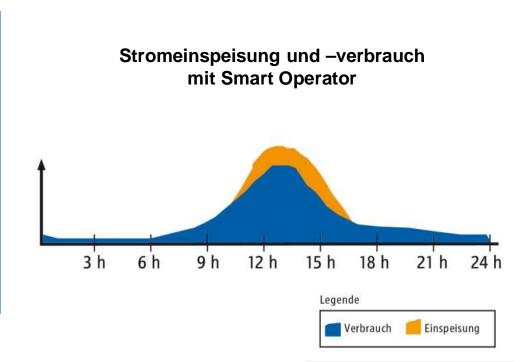
Datenerfassung

 Zu Erfassung der erforderlichen Messwerte wurden alle Zähler gegen intelligente Messsysteme (smart meter) getauscht

Kommunikationsnetz

> Für eine sichere und zuverlässige Kommunikation wurde jeder Haushalt an ein Glasfasernetz angeschlossen.


Haussteuerung (Home Energie Controller)


- > Kommunikation mit dem Smart Operator
- Kommunikation und Ansteuerung der (intelligenten)
 Hausgeräte, die vom Kunden flexibel freigegeben wurden
- Realisierung der Lastprofilvorgaben des Smart Operators
- > Smart Home Anwendung
 - Für die Kommunikation innerhalb der Gebäude
 - Visualisierung der Informationen für die Kunden

Der Smart Operator regelt selbständig das lokale Niederspannungsnetz und reguliert die Netzlasten

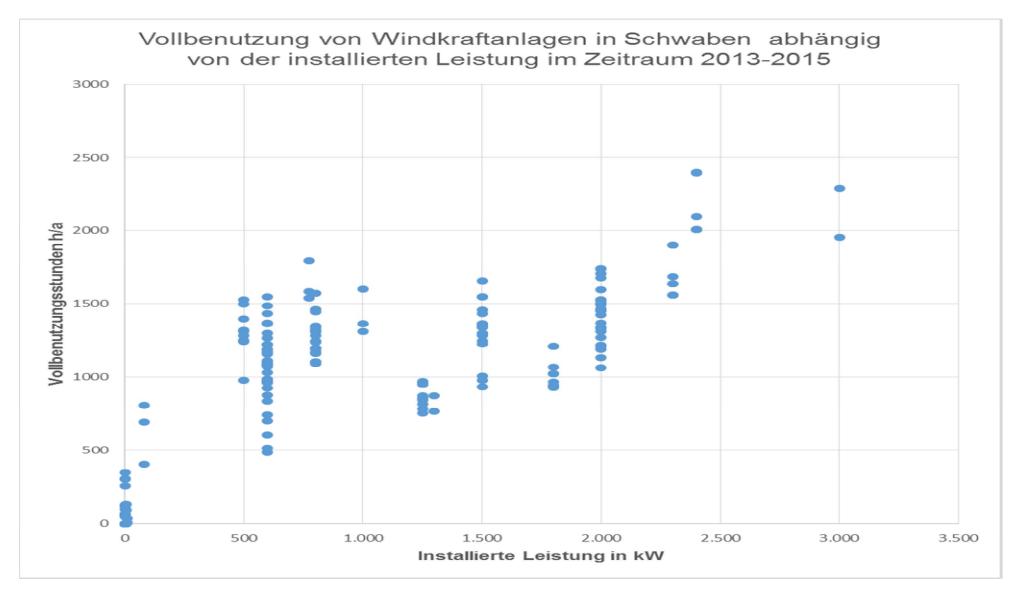
Der Stromfluss im Ortsnetz

 Das Ziel ist der Ausgleich von schwankenden Lasten und wachsenden Einspeisungen im Stromnetz durch eine intelligente Steuerung in einem abgegrenzten Netzbereich

"Verbrauch folgt der Erzeugung"

Agenda

- > Kurzvorstellung LEW-Gruppe
- > Energiewende in der Region
- > Aktivitäten und Projekte der LEW
- > Windkraft bei LEW


Windkraftanlagen im LEW- Netzgebiet

Erneuerbare-Energien-Gesetz (EEG)									
Energieträger	Kennzahl	2011	2012	2013	2014	2015			
Windenergie	Anzahl5	51	59	64	76	79			
	inst. Leistung [kW(p)]	55.432,00	60.813,80	63.127,66	82.952,56	93.156,36			
	Einspeisung [kWh]	73.494.298	75.647.346	76.795.325	89.049.087	132.540.399			
	davon MPM1[kWh]		18.209.803	34.880.223	56.304.336	105.872.183			
	davon GSP2[kWh]		689.893	1.501.924					
	davon SDV3[kWh]	311.483							
	Einspeisevergütung [€]	6.475.232	6.258.067	5.816.888	6.716.087	9.568.401			
	Ø Vergütung [ct/kWh]	8,81	8,27	7,57	7,54	7,22			

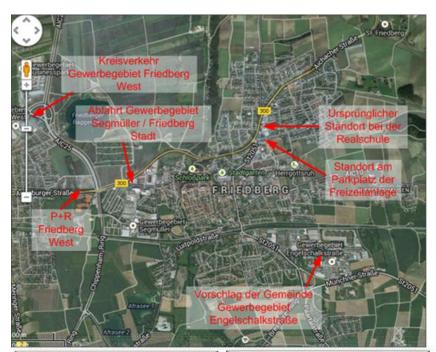
- > Aktuell sind rund **80 Windkraftanlagen** im LEW-Netzgebiet mit einer Leistung von ca. **100 MW** angeschlossen
- > Die *spez. Durchschnittsvergütung* hat sich zwischen 2011 2015 von durchschnittlich *8,8 ct/kWh auf 7,2 ct/kWh verringert*
- > Die durchschnittliche *Vollbenutzungsstunden* haben sich zwischen 2011 2015 *von* 1.325 h/a auf 1.422 h/a verbessert (im Vergleich Bayern ca. 1.500 h/a; Mecklenburg-Vorpommern ca. 1.900)

Vollbenutzungsstunden im Zeitraum 2013 - 2015

Unsere Überlegungen hinsichtlich Kleinwindkraft

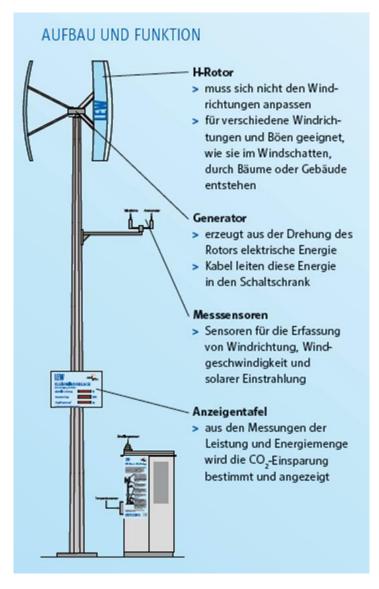
- Steigende Steuern, Abgaben (z.B. EEG,...) und Netzkosten werden die Haushaltsstrompreise weiter steigen lassen.
- Ø Der Trend zu Eigenerzeugungsanlagen wird zunehmen.
- Neben PV- Anlagen *könnten dies auch Kleinwindanlagen* sein. (Stromgestehungskosten zwischen 19 32 Ct/kWh)
- Bei *Niederspannungsnetzen* mit ausschließlich PV- Anlagen wird i.d.R. eine *gleichzeitige Einspeisung* aller Anlagen mit voller Leistung (97%) angenommen.
- Ø Erzeugungsanlagen verursachen speziell im Niederspannungsnetz oft hohe Ausbaukosten.

Unsere Fragen


- Wie verhalten sich Erzeugung von PV- Anlagen und Kleinwindkraftanlagen zueinander?
- Ist eine Aufstellung auch bei geringen Windgeschwindigkeiten und böigem Wind in bebautem Gebiet möglich / sinnvoll?
- Maben Kleinwindanlagen eine ausgeprägte jahreszeitliche Variation in der Erzeugung?
- Ist bei einer *Kombination PV mit Kleinwindanlagen* eine gleichzeitige Einspeisung mit voller Leistung anzunehmen?
- Welcher *Einfluss auf die Netzauslegung* und damit auch auf die Aufnahmekapazität der Niederspannungs-Verteilnetze hat ein Mischbetrieb von Kleinwind- und PV-Anlagen?

Standortsuche

- Standort soll bebautes Wohngebiet nachbilden. (*keine Suche nach optimal wirtschaftlichen Standort!!!!!!!!*)
- Eiswurf oder Schallemissionen sollen bei dem Standort unproblematisch sein.
- Anbindung an das Stromnetz mit geringen Kosten
- Anlage ist genehmigungsfrei <10 m und variabel (kann nach Versuchsende 1-2 Jahre leicht demontiert werden)
- Standort verfügt über gute geographische Voraussetzungen (Lage, Netzanbindung, Fahrzeit nach Augsburg)



Unsere Entscheidung: Technische Daten

- Ø Stahlrohrmast: 8,8 m hoch
- Ø Rotordurchmesser: 2 m
- Ø Blattlänge: 2 m
- Ø Rotorfläche: 4 m2
- Ø Gesamthöhe der Windkraftanlage: 9,8 m
- Ø Gewicht der Turbine: 52 kg
- Ø Flügelmaterial: Karbon-Faser-Verbund
- Ø Fundament: Beton
- Ø Nennleistung: 1.000 W
- Ø Maximalleistung: 1.200 W
- Ø Startgeschwindigkeit: 2-3 m/s (7-11 km/h)
- Ø Windgeschwindigkeit bei der Nennleistung: 11-12 m/s (40-43 km/h)
- Ø möglicher Arbeitsbereich: 4-16 m/s (14-58 km/h)
- Ø Lärmemissionen 28-32 dB
- Ø Hersteller: WindTec international GmbH

Projektbeschreibung

- LEW eine Kleinwindanlage mit zugehöriger Wetterstation und Anzeigetafel.
- Ø Die Hochschule Augsburg führt Datenauswertung durch.
- Der gewählte Standort in Friedberg erfüllte alle Voraussetzungen.
- Landkreises Aichach Friedberg und Stadt Friedberg bewerten das Projekt sehr positiv.
- Ø Offene Fragen hinsichtlich Haftpflichtversicherung wurden geklärt.
- Ø Inbetriebnahme Mai 2014.

Anlagenansicht als Fotomontage

- Ø Gewählt wurde eine Anlagen mit vertikaler Achse
- ✓ Vorteile: Windrichtungsunabhängigkeit, größere Sturmsicherheit

Datenverarbeitung

Die Datenerfassung

LEW Kleinwindanlage Friedberg

Exemplarische Tagesverläufe der Messdaten

Auswahl der

interessanten Größen

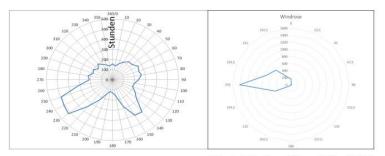
Messung der Windgeschwindigkeit

Datenlogger sendet die Messdaten an einen Server an der Hochschule

Home Wind Solarreckner Windenburge Q Webcom

Hochschule Augsburg, Fakultät für Elektrotechnik Prof. Dr.-Ing. Christine Schwaegerl

Windverhältnisse

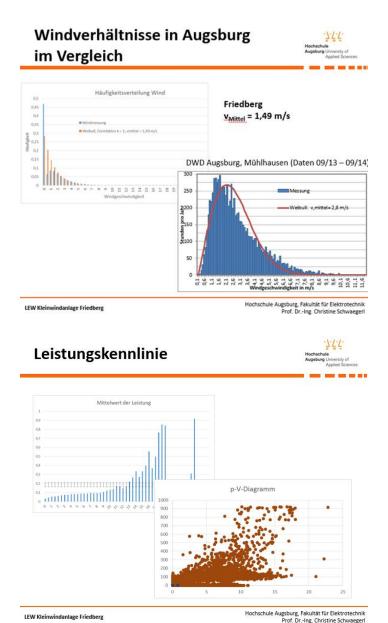

LEW Kleinwindanlage Friedberg

Hochschule Augsburg, Fakultät für Elektrotechnik

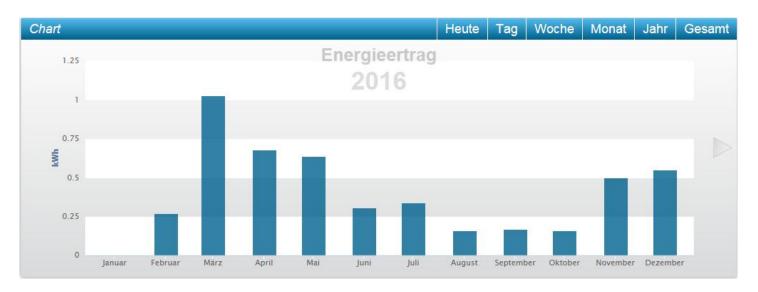
Prof. Dr.-Ing. Christine Schwaegerl

Windrichtung

DWD Augsburg, Mühlhausen (Daten 09/13 – 09/14) Standort Friedberg (Daten 04/14 – 04/15)

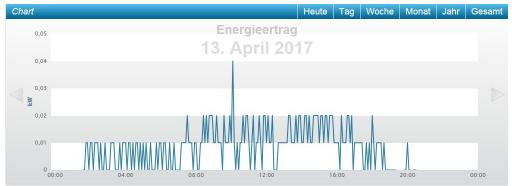

 Aufgrund des Standorts ist am Schulzentrum Friedberg nur eine Anströmung über den Sportplatz möglich

Hochschule Augsburg, Fakultät für Elektrotechnik Prof. Dr.-Ing. Christine Schwaegerl

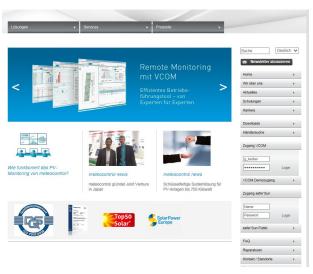

Ergebnisse

- Mittlere Durchschnittswindgeschwindigkeit am Standort (1,49 m/s) ist sehr gering
- ✓ Vertikalläufer benötigen zwar niedrigere Anlaufwindgeschwindigkeiten, allerdings ist die Erzeugung sehr gering
- Nicht jeder Wechselrichter ist für Microwindanlagen geeignet
- Ø Minütliche Abtastung der Werte ist zur genauen Vermessung einer Kleinwindanlage nicht ausreichend
- Sekündliche Schwankungen der Windgeschwindigkeit und -richtung

Monatsverteilung



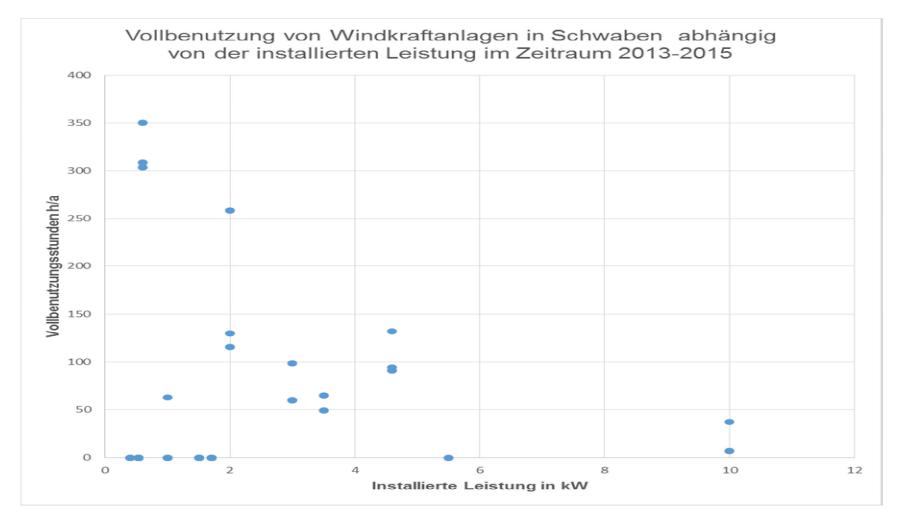
Tageslastgänge



Datenzugang Kleinwindanlage Friedberg

> http://www.meteocontrol.com/de/

safer Sun Public



> Dashboard

Vollbenutzungsstunden Kleinwindanlagen im Zeitraum 2013 - 2015

Unsere Empfehlungen vor Kauf einer Anlage

- Unabhängige Windmessung durchführen (mind.1 Jahr)
- Informationen über Hersteller und WKA einholen (Gütesigel, Zertifizierungen)
- Ø Angaben zu Nennleistung und jährl. Stromerzeugung prüfen
- Baugenehmigung erforderlich?
 - Falls nicht, trotzdem Abstimmung mit Kommune
 - Sprechen Sie im Vorfeld mit Ihren Nachbarn (eventuelle Geräusche und Blendwirkungen)
- Wirtschaftlichkeitsrechnung durchführen (möglichst viel Eigenverbrauch)

Unsere Fragen

- Ist bei einer Kombination PV mit Kleinwindanlagen eine gleichzeitige Einspeisung mit voller Leistung anzunehmen?
- Welcher Einfluss auf die Netzauslegung und damit auch auf die Aufnahmekapazität der Niederspannungs-Verteilnetze hat ein Mischbetrieb von Kleinwind- und PV-Anlagen ?

 geringen / keinen

VIELEN DANK FÜR DIE AUFMERKSAMKEIT.

